Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Connectome Project Releases Brain Imaging Data for Brain Circuitry Research

By BiotechDaily International staff writers
Posted on 19 Mar 2013
Image: A map of average “functional connectivity” in human cerebral cortex (including subcortical gray matter). Regions in yellow are functionally connected to a “seed” location in the parietal lobe of the right hemisphere, whereas regions in red and orange are weakly connected or not connected at all (Photo courtesy of Washington University in St. Louis).
Image: A map of average “functional connectivity” in human cerebral cortex (including subcortical gray matter). Regions in yellow are functionally connected to a “seed” location in the parietal lobe of the right hemisphere, whereas regions in red and orange are weakly connected or not connected at all (Photo courtesy of Washington University in St. Louis).
A five-year endeavor to tie brain connectivity to human behavior has generated a set of cutting-edge imaging and behavioral data to the scientific community. The project has two major goals: to collect huge amounts of data using sophisticated brain imaging modalities on a large population of healthy adults, and to make the data freely available so that scientists worldwide can make additional discoveries about brain circuitry.

The initial data release from the Human Connectome Project includes brain imaging scans in addition to behavioral information--individual differences in cognitive capabilities, personality, emotional characteristics, and perceptual function--collected from 68 healthy adult volunteers. Over the next several years, the number of subjects evaluated will increase steadily to a final target of 1,200. The initial release is an important milestone because the new data have much higher resolution in space and time than data obtained by traditional brain scans.

The Human Connectome Project (HCP) consortium is led by David C. Van Essen, PhD, a professor at Washington University School of Medicine in St. Louis (MO, USA), and Kamil Ugurbil, PhD, director of the Center for Magnetic Resonance Research and a professor at the University of Minnesota (Twin Cities, USA).

“By making this unique data set available now, and continuing with regular data releases every quarter, the Human Connectome Project is enabling the scientific community to immediately begin exploring relationships between brain circuits and individual behavior,” said Dr. Van Essen. “The HCP will have a major impact on our understanding of the healthy adult human brain, and it will set the stage for future projects that examine changes in brain circuits underlying the wide variety of brain disorders afflicting humankind.”

The consortium includes more than 100 investigators and technical staff at 10 institutions in the United States and Europe. It is funded by 16 components of the U.S. National Institutes of Health (Bethesda, MD, USA) via the Blueprint for Neuroscience Research. “The high quality of the data being made available in this release reflects an intensive, multiyear effort to improve the data acquisition and analysis methods by this dedicated international team of investigators,” stated Dr. Ugurbil.

The data set includes information about brain connectivity in each individual, using two distinct magnetic resonance imaging (MRI) approaches. One, called resting-state functional connectivity, is based on spontaneous fluctuations in functional MRI (fMRI) signals that occur in a complex pattern in space and time throughout the gray matter of the brain. Another, called diffusion imaging, provides information about the long-distance “wiring,” the anatomic pathways navigating the brain’s white matter. Each technique has its own limitations, and assessments of both functional connectivity and structural connectivity in each subject should allow deeper insight than by either technique alone.

Each participant is also scanned while performing a variety of tasks within the scanner, thereby providing extensive data about Task-fMRI brain activation patterns. Behavioral data using a range of tests performed outside the scanner are being released along with the scan data for each subject. The study participants are drawn from families that include siblings, some of whom are twins. This will enable studies of the heritability of brain circuits.

The imaging data set released by the HCP takes up approximately two terabytes of computer memory and is stored in a customized database called “ConnectomeDB.”

“ConnectomeDB is the next-generation neuroinformatics software for data sharing and data mining. It's a convenient and user-friendly way for scientists to explore the available HCP data and to download data of interest for their research,” concluded Daniel S. Marcus, PhD, assistant professor of radiology and director of the Neuroinformatics Research Group at Washington University School of Medicine. “The Human Connectome Project represents a major advance in sharing brain imaging data in ways that will accelerate the pace of discovery about the human brain in health and disease.”

Related Links:
Human Connectome Project
Washington University School of Medicine in St. Louis
University of Minnesota


comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.