Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Analytical Trick Improves Efficiency of Protein Analysis

By BiotechDaily International staff writers
Posted on 03 Mar 2013
Researchers have developed a new, multisample technique to accelerate protein identification and quantification by mass spectrometry.

Mass spectrometry (MS) is often used to examine protein variations. Chemists have recently begun to double-up with two different samples in a single run, e.g., to compare normal to diseased tissue to examine how the proteins change. Now, researchers at the University of Wisconsin-Madison (WISC; Madison, WI; USA) led by Joshua Coon, professor of chemistry and biomolecular chemistry, have built on this by developing a technique, termed “neutron-encoding,” with potential to multiplex 20 samples at once.

In the current study, the team investigated mouse tissue for potential biochemical pathways underlying the correlation between caloric restriction and extended lifespan previously observed in many animals. "Some of these mice have lost a certain gene related to metabolism, so we are comparing four types of tissue all at once. We can look at the brain, liver, or heart, and ask how does the abundance of proteins vary?" said first author and graduate student Alexander Hebert.

The team has performed six simultaneous analyses using the new technique; it could do batches of 20. Key to the existing, original doubling-up technique was synthetically inserting stable isotope tags into the amino acids used in metabolic labeling of proteins. In preparing two samples, one sample would receive an amino acid containing common isotopes, the other containing heavier isotopes. The result—chemically identical proteins with slightly different masses easily identified by MS.

The new report describes the use of amino acids built from a broader range of isotopes that would be expected to have identical mass, but do not since part of their mass has been converted to energy required to hold the atomic nuclei together. Without this energy, the positively charged proteins would repel each other and the atomic nucleus would be destroyed. The tiny loss of mass due to this conversion to binding energy can be detected in the new, ultra-precise mass spectrometers. The mass difference in the new technique is more than 1,000 times below the mass differences in the existing doubled-up technique, but it is enough to quantify and identify proteins from at least 6, and theoretically, 20 samples at once.

Prof. Coon added, "We could look for protein differences in cells from 100 different tumors. The proteins might reveal that you are dealing with 5 or 10 distinct syndromes in this seemingly identical cancer, which could suggest treatments that are more tailored to the individual. If you compare proteins in normal versus tumor tissue, you might find a certain protein at uncommonly high concentrations, or [that] was modified in certain ways. You might identify a protein that would help diagnose this cancer sooner [or] a protein that is so vital to the cancer that it would make an ideal target for a new drug."

The new procedure was described advanced online February 24, 2013, in the journal Nature Methods.

Related Links:
University of Wisconsin-Madison
Wisconsin Institute for Discovery



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.