Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Computer Simulation and Knotted Chain Technology Yield Virtual Synthetic Proteins

By BiotechDaily International staff writers
Posted on 28 Feb 2013
Image: The self-knotted structure of the bionic protein (Copyright: Ivan Coluzza).
Image: The self-knotted structure of the bionic protein (Copyright: Ivan Coluzza).
Accessing a powerful computer complex, a team of Austrian physicists has developed virtual synthetic proteins as the first step to the in vitro synthesis of fully active "bionic proteins."

Physicists at the University of Vienna (Austria) together with investigators at the University of Natural Resources and Life Sciences (Vienna, Austria) exploited the computing power of The Vienna Scientific Cluster (Austria)—a pool of high-performance computing resources that covers the computing demands of four different Universities: the University of Vienna, Vienna University of Technology, the University of Natural Resources and Applied Life Science, and the Graz University of Technology—to develop a virtual mechanism for the construction of proteins from colloidal particles.

The "knotted chain" methodology, which was fully described in the February 11, 2013, issue of the journal Physical Review Letters, was used to construct self-assembling chains of simple particles, with final structures fully controlled by the sequence of particles along the chain. The individual particles forming the chain were colloids decorated with mutually interacting patches, which can be manufactured in the laboratory with current technology.

The methodology was applied to the design of sequences folding into self-knotting chains, in which the end monomers were by construction always close to each other in space. The knotted structure could then be externally locked simply by controlling the interaction between the end monomers, paving the way to applications in the design and synthesis of active materials and novel carriers for drugs delivery.

"Imitating these astonishing bio-mechanical properties of proteins and transferring them to a fully artificial system is our long term objective,” said first author Dr. Ivan Coluzza, research in the physics department at the University of Vienna.

Related Links:

University of Vienna
University of Natural Resources and Life Sciences
The Vienna Scientific Cluster



Channels

Genomics/Proteomics

view channel
Image: The osteochondroretricular stem cell is a newly identified type of bone stem cell that appears to be vital to skeletal development and may provide the basis for novel treatments for osteoarthritis, osteoporosis, and bone fractures. In this illustration of the head of a femur, osteochondroretricular stem cells are visualized in red (Photo courtesy of Dr. Timothy Wang, Columbia University).

Gremlin 1 Expression Distinguishes Stem Cells Able to Regenerate Bones and Cartilage in Adult Mice

A newly identified type of stem cell in the bone marrow of adult mice was found to be capable of regenerating both bone and cartilage. Investigators at Columbia University (New York, NY, USA) reported... Read more

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.