Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Computer Simulation and Knotted Chain Technology Yield Virtual Synthetic Proteins

By BiotechDaily International staff writers
Posted on 28 Feb 2013
Image: The self-knotted structure of the bionic protein (Copyright: Ivan Coluzza).
Image: The self-knotted structure of the bionic protein (Copyright: Ivan Coluzza).
Accessing a powerful computer complex, a team of Austrian physicists has developed virtual synthetic proteins as the first step to the in vitro synthesis of fully active "bionic proteins."

Physicists at the University of Vienna (Austria) together with investigators at the University of Natural Resources and Life Sciences (Vienna, Austria) exploited the computing power of The Vienna Scientific Cluster (Austria)—a pool of high-performance computing resources that covers the computing demands of four different Universities: the University of Vienna, Vienna University of Technology, the University of Natural Resources and Applied Life Science, and the Graz University of Technology—to develop a virtual mechanism for the construction of proteins from colloidal particles.

The "knotted chain" methodology, which was fully described in the February 11, 2013, issue of the journal Physical Review Letters, was used to construct self-assembling chains of simple particles, with final structures fully controlled by the sequence of particles along the chain. The individual particles forming the chain were colloids decorated with mutually interacting patches, which can be manufactured in the laboratory with current technology.

The methodology was applied to the design of sequences folding into self-knotting chains, in which the end monomers were by construction always close to each other in space. The knotted structure could then be externally locked simply by controlling the interaction between the end monomers, paving the way to applications in the design and synthesis of active materials and novel carriers for drugs delivery.

"Imitating these astonishing bio-mechanical properties of proteins and transferring them to a fully artificial system is our long term objective,” said first author Dr. Ivan Coluzza, research in the physics department at the University of Vienna.

Related Links:

University of Vienna
University of Natural Resources and Life Sciences
The Vienna Scientific Cluster



Channels

Genomics/Proteomics

view channel
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).

Double Targeting Approach Increases Potential for Cancer Treatment with Oncolytic Viruses

Cancer researchers have used a double targeting approach to direct oncolytic viruses specifically to tumor cells where they reproduce until the cancer cells burst, releasing more viruses to infect and... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.