Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

Stem Cell Development Could Lead to New Nanoscale Bone Repair Technology

By BiotechDaily International staff writers
Posted on 27 Feb 2013
Image: Stem cell breakthrough could lead to new bone repair therapies (Photo courtesy of the University of Southampton).
Image: Stem cell breakthrough could lead to new bone repair therapies (Photo courtesy of the University of Southampton).
British scientists have created a new application to help generate bone cells that could lead to groundbreaking bone repair therapies for individuals with bone fractures or those who need hip replacement surgery due to osteoporosis and osteoarthritis.

The research, performed by Dr. Emmajayne Kingham, from the University of Southampton (UK), working with colleagues the University of Glasgow (Scotland, UK), and published online January 30, 2013, in the journal Small, cultured human embryonic stem cells on to the surface of plastic materials and evaluated their capability to change.

Scientists were able to use the nanotopographic patterns on the biomedical plastic to manipulate human embryonic stem cells towards bone cells. This was accomplished without any chemical enhancement. The compounds, including the biomedical implantable substance polycarbonate plastic, provide an available and less expensive way of culturing human embryonic stem cells and presents new avenues for future medical research in this field.

Prof. Richard Oreffo, who led the University of Southampton team, explained, “To generate bone cells for regenerative medicine and further medical research remains a significant challenge. However, we have found that by harnessing surface technologies that allow the generation and ultimately scale up of human embryonic stem cells to skeletal cells, we can aid the tissue engineering process. This is very exciting. Our research may offer a whole new approach to skeletal regenerative medicine. The use of nanotopographical patterns could enable new cell culture designs, new device designs, and could herald the development of new bone repair therapies as well as further human stem cell research.”

This latest discovery expands on the close collaborative research earlier undertaken by the University of Southampton and the University of Glasgow. In 2011, the scientists effectively used plastic with embossed nanopatterns to cultivate and spread adult stem cells while maintaining their stem cell properties, a process that is less expensive and simpler to produce than earlier ways of manufacturing.

Dr. Nikolaj Gadegaard, Institute of Molecular, Cell and Systems Biology at the University of Glasgow, remarked, “Our previous collaborative research showed exciting new ways to control mesenchymal stem cell--stem cells from the bone marrow of adults—growth and differentiation on nanoscale patterns. This new Southampton-led discovery shows a totally different stem cell source, embryonic, also respond in a similar manner and this really starts to open this new field of discovery up. With more research impetus, it gives us the hope that we can go on to target a wider variety of degenerative conditions than we originally aspired to. This result is of fundamental significance.”

Related Links:
University of Southampton
University of Glasgow



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.