Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Stem Cell Development Could Lead to New Nanoscale Bone Repair Technology

By BiotechDaily International staff writers
Posted on 27 Feb 2013
Image: Stem cell breakthrough could lead to new bone repair therapies (Photo courtesy of the University of Southampton).
Image: Stem cell breakthrough could lead to new bone repair therapies (Photo courtesy of the University of Southampton).
British scientists have created a new application to help generate bone cells that could lead to groundbreaking bone repair therapies for individuals with bone fractures or those who need hip replacement surgery due to osteoporosis and osteoarthritis.

The research, performed by Dr. Emmajayne Kingham, from the University of Southampton (UK), working with colleagues the University of Glasgow (Scotland, UK), and published online January 30, 2013, in the journal Small, cultured human embryonic stem cells on to the surface of plastic materials and evaluated their capability to change.

Scientists were able to use the nanotopographic patterns on the biomedical plastic to manipulate human embryonic stem cells towards bone cells. This was accomplished without any chemical enhancement. The compounds, including the biomedical implantable substance polycarbonate plastic, provide an available and less expensive way of culturing human embryonic stem cells and presents new avenues for future medical research in this field.

Prof. Richard Oreffo, who led the University of Southampton team, explained, “To generate bone cells for regenerative medicine and further medical research remains a significant challenge. However, we have found that by harnessing surface technologies that allow the generation and ultimately scale up of human embryonic stem cells to skeletal cells, we can aid the tissue engineering process. This is very exciting. Our research may offer a whole new approach to skeletal regenerative medicine. The use of nanotopographical patterns could enable new cell culture designs, new device designs, and could herald the development of new bone repair therapies as well as further human stem cell research.”

This latest discovery expands on the close collaborative research earlier undertaken by the University of Southampton and the University of Glasgow. In 2011, the scientists effectively used plastic with embossed nanopatterns to cultivate and spread adult stem cells while maintaining their stem cell properties, a process that is less expensive and simpler to produce than earlier ways of manufacturing.

Dr. Nikolaj Gadegaard, Institute of Molecular, Cell and Systems Biology at the University of Glasgow, remarked, “Our previous collaborative research showed exciting new ways to control mesenchymal stem cell--stem cells from the bone marrow of adults—growth and differentiation on nanoscale patterns. This new Southampton-led discovery shows a totally different stem cell source, embryonic, also respond in a similar manner and this really starts to open this new field of discovery up. With more research impetus, it gives us the hope that we can go on to target a wider variety of degenerative conditions than we originally aspired to. This result is of fundamental significance.”

Related Links:
University of Southampton
University of Glasgow



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.