Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Enhanced Characterization Technology Provides Better Understanding of Shape, Structure of Proteins

By BiotechDaily International staff writers
Posted on 20 Feb 2013
Image: The Viscotek TDA at Hamburg EMBL is used to enhance protein characterization by small angle X-ray scattering (SAXS) (Photo courtesy of Malvern Instruments).
Image: The Viscotek TDA at Hamburg EMBL is used to enhance protein characterization by small angle X-ray scattering (SAXS) (Photo courtesy of Malvern Instruments).
A triple detector array system used before protein analysis provides complementary biophysical data and simultaneously purifies samples for measurement, resulting in more data and better quality information from each experiment.

Researchers from the European Molecular Biology Laboratory (EMBL; Hamburg, Germany), have integrated a multidetector array size exclusion chromatography (SEC) system from Malvern Instruments (Viscotek TDA triple detector array; Malvern, Worchester, UK) at the laboratory’s strong, small angle X-ray scattering (SAXS) beamline to improve the productivity and quality of detailed protein characterization work.

This novel set-up is not only limited to the institute itself, but is widely accessible to structural biology researchers via BioStructX, a European Commission initiative that creates a single gateway to Europe’s leading synchrotron facilities.

SEC generates a fractionated sample for measurement, separated on the basis of hydrodynamic size. The Viscotek TDA integrates refractive index, ultraviolet (UV), and light scattering detectors, which in combination provide concentration and absolute molecular weight measurement for these eluting fractions. Incorporating this system with the SAXS beamline provides purified samples for measurement that provide optimal signal-to-noise ratios and high quality data. In combination with the biophysical information from the TDA, these data provide detailed evidence about the internal shape and structure of proteins that furthers understanding of their behavior. Specifically, SAXS information is helpful for the determination and tracking of the low-resolution structures and conformational alterations that proteins exhibit.

Both EMBL Hamburg and Malvern Instruments are partners in the BioStructX project, which brings together facilities from across Europe to establish a cutting-edge coordinated and multisite infrastructure to support access for key methods in structural biology. The new integrated SEC-SAXS set-up was developed by a number of specialists within EMBL, and with input from Malvern Instruments to enhance the department’s systems to BioSAXS users transnationally. The automated multipronged characterization has already demonstrated its advantages to the first users and it is expected to be in demand as the BioSructX project advances.

Malvern provides materials and biophysical characterization technology and expertise that enable scientists and engineers to determine and control the properties of dispersed systems. These systems range from proteins and polymers in solution, particle and nanoparticle suspensions, and emulsions, through to sprays and aerosols, industrial bulk powders and high concentration slurries.

Related Links:
European Molecular Biology Laboratory
Malvern Instruments


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.