Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Bacterial Endonculease Complex Is a New Tool for Precise Mammalian Genome Engineering

By BiotechDaily International staff writers
Posted on 07 Feb 2013
A new tool based on endonucleases extracted from bacterial adaptive immune mechanisms that can be reprogrammed with customizable small, noncoding RNAs is beginning to be used to easily and specifically engineer the human genome.

Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid.

The Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system introduces a double-strand break at a specific site in DNA containing a sequence complementary to crRNA. DNA cleavage is executed by Cas9, which uses two distinct active sites to generate site-specific nicks on opposite DNA strands. The Cas9–crRNA complex functions as an RNA-guided endonuclease with RNA-directed target sequence recognition and protein-mediated DNA cleavage.

The first description of genomic engineering using the CRISPR approach was published by investigators at the University of California, Berkeley (USA) in the August 17, 2012, issue of the journal Science. Two new papers by investigators at Harvard Medical School (Boston, MA, USA) appeared in the January 3, 2013, issue of Science and have established the concept of using CRISPR to modify the human and other mammalian genomes.

“Out of this somewhat obscure bacterial immune system comes a technology that has the potential to really transform the way that we work on and manipulate mammalian cells and other types of animal and plant cells,” said Dr. Jennifer Doudna, professor of molecular and cell biology and chemistry at the University of California, Berkeley. “This is a poster child for the role of basic science in making fundamental discoveries that affect human health. The ability to modify specific elements of an organism’s genes has been essential to advance our understanding of biology, including human health. However, the techniques for making these modifications in animals and humans have been a huge bottleneck in both research and the development of human therapeutics.

“Based on the feedback we have received, it is possible that this technique will completely revolutionize genome engineering in animals and plants,” said Dr. Doudna. “It is easy to program and could potentially be as powerful as the polymerase chain reaction (PCR).”

“I think this is going to be a real hit,” said Dr. George Church, professor of genetics at Harvard Medical School. “There are going to be a lot of people practicing this method because it is easier and about 100 times more compact than other techniques.”

Related Links:
University of California, Berkeley
Harvard Medical School


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.