Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
BioConferenceLive

Optoelectrokinetic Tech Underlies New Biochip Approach

By BiotechDaily International staff writers
Posted on 05 Feb 2013
Image: Researchers have demonstrated a new technology that combines a laser and electric fields to create tiny centrifuge-like whirlpools to separate particles and microbes by size, a potential lab-on-a-chip system for medicine and research. Here the technique is used to collect a bacterium called Shewanella oneidensis (Photo courtesy of Purdue University).
Image: Researchers have demonstrated a new technology that combines a laser and electric fields to create tiny centrifuge-like whirlpools to separate particles and microbes by size, a potential lab-on-a-chip system for medicine and research. Here the technique is used to collect a bacterium called Shewanella oneidensis (Photo courtesy of Purdue University).
Image: Here the rapid electrokinetic patterning technique is used to arrange bacteria into a specific pattern. The technique may be used as a tool for nanomanufacturing because it shows promise for the assembly of suspended particles, called colloids. The ability to construct objects with colloids makes it possible to create structures with particular mechanical and thermal characteristics to manufacture electronic devices and tiny mechanical parts (Photo courtesy of Purdue University).
Image: Here the rapid electrokinetic patterning technique is used to arrange bacteria into a specific pattern. The technique may be used as a tool for nanomanufacturing because it shows promise for the assembly of suspended particles, called colloids. The ability to construct objects with colloids makes it possible to create structures with particular mechanical and thermal characteristics to manufacture electronic devices and tiny mechanical parts (Photo courtesy of Purdue University).
A recently developed optoelectrokinetic manipulation technique was used to separate microorganisms according to size, which demonstrated the potential of this method for the development of "lab-on-a-chip" diagnostic technologies.

The technique, rapid electrokinetic patterning - or REP, works by focusing an infrared laser to heat a fluid in a microchannel containing particles or bacteria. An electric field is applied that combined with the laser's heating action causes the fluid to circulate in a "microfluidic vortex" that functions like a centrifuge to isolate particles based on size.

A detailed description of the method, which was used to collect three different types of microorganisms: the bacterium Shewanella oneidensis MR-1; the single-cell spherical fungus Saccharomyces cerevisiae; and the spherical bacterium Staphylococcus aureus, was published in the December 7, 2012, issue of the journal Lab on a Chip.

Senior author Dr. Steven T. Wereley, professor of mechanical engineering at Purdue University (West Lafayette, IN, USA), said, "By properly choosing the electrical frequency we can separate blood components, such as platelets. Say you want to collect Shewanella bacteria, so you use a certain electrical frequency and collect them. Then the next day you want to collect platelets from blood. That is going to be a different frequency. We foresee the ability to dynamically select what you will collect, which you could not do with conventional tools. The new results demonstrate that REP can be used to sort biological particles but also that the technique is a powerful tool for development of a high-performance on-chip bioassay system."

"It will not be on the market in a year," said Dr. Wereley. "We are still in the research end of this. We are sort of at the stage of looking for the killer app for this technology."

The REP method may also have applications in the field of nanomanufacturing due to its ability to assemble suspensions of particles known as colloids. This may be particularly relevant to the pharmaceutical industry, as a number of drugs are manufactured from solid particles suspended in liquid. Currently particles are collected and separated from the liquid by a process of filtration and centrifugation—methods not now available for production use at the nano level.

Related Links:

Purdue University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.