Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Delivering Stem Cell Therapy from the Nose Proves Safe and Effective

By BiotechDaily International staff writers
Posted on 15 Jan 2013
Researchers have devised a simple, safe, and effective way to deliver stem cells to treat brain tumor, via the nose.

The study’s findings were published in the December 2012 issue of the journal STEM CELLS Translational Medicine. Treatment alternative for gliomas, the most common type of primary brain tumors, are very limited because of their diffuse invasive makeup and their ability to evade radiation treatments and traditional chemotherapy. Stem cells have shown great potential as a therapy, but how to deliver them optimally to the tumor site has become a challenge.

The most frequently used technique, surgical implantation, has a low survival rate for the stem cells and the procedure itself can lead to complications such as inflammation. Injecting the cells into the blood stream is another approach, but it carries an increased risk of the cells amassing in peripheral organs, which could cause side effects and also means that not enough of the stem cells are getting to the targeted tumor.

“We investigated the feasibility of intranasal administration of neural stem/progenitor cells [NSPC] as an alternative,” said lead principal investigator Nils Ole Schmidt, MD, of the University Medical Center Hamburg-Eppendorf (UMCHE; Hamburg, Germany). He and UMCHE colleague Matthias Reitz, MD, supervised the study, which also involved researchers from the University of British Columbia Hospital (Vancouver, Canada), and Chung-Ang University College of Medicine (Seoul, Korea).

The scientists assessed their notion on three different glioma cell lines in mice. The findings revealed that not only did the stem cells arrive at the targeted tumor, but that they did it rapidly and without remaining in any peripheral regions. The stem cells, Six hours after the first delivery, had enriched within the tumor area. Twenty-four hours later, the number of cells in the tumor had increased even more with up to 24% of stem cells that had been applied as nose drops.

The study also revealed two major migration routes--the olfactory nerve pathways and the small blood vessels that comprise the body’s microvasculature system--and a potential signal that attracted the cells to the malignant tumor. “It is likely that guidance signals such as chemotactic factors released by the tumor itself and the adjacent reactive brain parenchyma drew in the stem cells,” Dr. Reitz said.

“Our study provides proof-of-concept that the noninvasive intranasal passage of NSPC is a highly attractive and efficient alternative method of cell administration for stem cell-based therapies in brain tumors. This offers the possibility of multiple treatments, potentially with different therapeutic payloads during the disease course,” Dr. Schmidt added.

“The study addresses an important aspect of any stem cell treatment: identification of a safe and effective delivery method as the treatment advances toward clinical trials,” said Dr. Anthony Atala, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine (Durham, NC, USA). “These results point to the potential of intranasal delivery as a convenient and noninvasive option for delivery.”

Related Links:
University Medical Center Hamburg-Eppendorf
University of British Columbia Hospital
Chung-Ang University College of Medicine


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: In the liver tissue of obese animals with type II diabetes, unhealthy, fat-filled cells are prolific (small white cells, panel A). After chronic treatment through FGF1 injections, the liver cells successfully lose fat and absorb sugar from the bloodstream (small purple cells, panel B) and more closely resemble cells of normal, non-diabetic animals (Photo courtesy of the Salk Institute for Biological Studies).

Fibroblast Growth Factor 1 Treatment Restores Glucose Control in Mouse Diabetes Model

A "vaccine" based on the metabolic regulator fibroblast growth factor 1 (FGF1) removed the insulin resistance that characterizes type II diabetes and restored the body's natural ability to manage its glucose... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.