Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Synthetic Membrane Channels Constructed with DNA-Based Nanostructures

By BiotechDaily International staff writers
Posted on 28 Nov 2012
Scientists have shown for the first time that synthetic, lipid-membrane channels can be constructed by using a technique employing DNA molecules as building materials for custom-designed, self-assembling, nanometer-scale structures. The results suggest potential applications as molecular sensors, antimicrobial agents, and drivers of novel nanodevices.

Physicists at the Technical University of Munich (TUM; Garching, Germany) and the University of Michigan (Ann Arbor, MI, USA) have applied the emerging field of DNA-nanotechnology, including “scaffolded DNA origami,” to mimic the shape and function of one of the most widespread and important natural nanomachines – the biological transmembrane channel. The synthetic structure consists of a needle-like stem (42 nm long, 2 nm internal diameter) that penetrates and spans a lipid bilayer membrane. The stem is partly sheathed by a barrel-shaped cap that adheres to the membrane, in part via a ring of 26 cholesterol moieties around the edge of the cap that helps the device dock while the stem forms a channel. The device is formed by 54 double-helical DNA domains on a honeycomb lattice. Evidence is presented suggesting that these nanostructures function much like cellular ion channels. For example, in single-channel electrophysiological measurements there were similarities to natural ion channels, such as conductance on the order of 1 nanosiemens and channel gating.

"We have not tested this yet with living cells, but experiments with lipid vesicles show that our synthetic device will bind to a bilayer lipid membrane in the right orientation, [...] forming a pore," explains Prof. Friedrich Simmel, co-coordinator of the Excellence Cluster Nanosystems Initiative Munich. Further experiments demonstrated that the resulting pores have electrical conductivity that suggests they could act like the voltage-controlled gates present in cells and that the transmembrane current could be tuned by adjusting fine structural details.

This study of the first artificial channel suggests a number of potential applications. "If you want, for example, to inject something into a cell, you have to find a way to punch a hole into the cell membrane, and this device can do that, at least with model cell membranes," says Prof. Hendrik Dietz, a fellow of the TUM Institute for Advanced Study. To test one potential application, the researchers used these devices as "nanopores" for several different molecular sensing experiments and confirmed that it is possible, by measuring changes in electrical characteristics, to record the passage of single molecules. Because this approach allows both geometric and chemical tailoring of the membrane channels, it might offer advantages over two other families of molecular sensors, based on biological and solid-state nanopores respectively.

Other conceivable applications remain to be investigated. One notion is to imitate viruses or phages to kill targeted bacteria. Synthetic channels might be used as nanoneedles to inject material into cells for medical use such as gene-therapy or for basic studies of cell metabolism. Another idea is to harness the ion flux to drive sophisticated nanodevices.

The study was reported November 16, 2012, in the journal Science.

Related Links:
Technische Universitaet Muenchen
University of Michigan


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.