Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Sample Card Punching Workstation Provides High-Throughput Sample Prep

By BiotechDaily International staff writers
Posted on 22 Nov 2012
Image: The easyPunch STARlet workstation (Photo courtesy of Hamilton Robotics).
Image: The easyPunch STARlet workstation (Photo courtesy of Hamilton Robotics).
A new laboratory workstation has been developed to minimize human error and enables high-throughput sample preparation for a range of applications, such as forensic reference databasing as well as preclinical and clinical drug metabolism and pharmacokinetics (DMPK) and toxicology studies.

Hamilton Robotics (Reno, NV, USA) in collaboration with GE Healthcare (Chalfont St. Giles, UK) Life Sciences introduces the easyPunch STARlet workstation, the first fully automated system integrating sample card punching and liquid handling into one easy workflow.

The easyPunch STARlet system, made in Hamilton’s Bonaduz (Switzerland) facility, incorporates punching of GE Healthcare Whatman FTA and DMPK sample collection cards with automated sample extraction, eliminating typical logjams in laboratory processes.

“Because many labs lack a fully automated workflow, thousands of samples such as blood and saliva placed on punch cards are waiting long periods to be processed for critical studies and forensic analysis,” said Stefan Mauch, product manager of the easyPunch STARlet system. “Until now, sample card punching for analysis preparation required tedious manual work or separate semiautomated instruments and an operator. Researchers or technicians had to be consistently precise and experienced when handling and tracking samples, or the results could be compromised.”

The easyPunch workstation is based on the Hamilton Robotics Microlab STARlet platform and features two special modules and robotic arms for transporting and punching paper cards. The samples are monitored by effective tracking software to remove any risk of sample identification errors. The total process is tracked using imaging recognition. Hamilton’s proprietary software, based on industrial machine vision technology, provides complete control and monitoring of the punching process. The software recognizes the position and size of the card, identifies the sample by reading the barcode, and determines the punch area. The workstation also takes a picture of the target well to ensure the punch has arrived in the designated well.

Compatibility with library information-management systems (LIMS) and full traceability ensure that data can be linked effectively to each sample. The modular nature of the system enables incorporation of other devices, such as a centrifuge and a plate sealer, thus potentially integrating the entire workflow.

“Ease of use makes this workstation an attractive solution for repetitive tasks in forensic and biopharma sample handling,” remarked Navjot Kaur, product manager at Hamilton Robotics in Reno, Nevada. “Currently technicians manually clean between samples, but the easyPunch STARlet system performs this step automatically, reducing cross-contamination. Barcode reading and imaging support full traceability and reporting of samples, both during punching and downstream processing.”

Hamilton Company is a global leader in the development and manufacture of process measurement, liquid handling, robotics and storage solutions, serving customers in academic and private research laboratories, pharmaceutical, and clinical diagnostic companies and government institutions.

Related Links:

Hamilton Robotics
GE Healthcare




Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.