Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
PZ HTL SA

Sample Card Punching Workstation Provides High-Throughput Sample Prep

By BiotechDaily International staff writers
Posted on 22 Nov 2012
Image: The easyPunch STARlet workstation (Photo courtesy of Hamilton Robotics).
Image: The easyPunch STARlet workstation (Photo courtesy of Hamilton Robotics).
A new laboratory workstation has been developed to minimize human error and enables high-throughput sample preparation for a range of applications, such as forensic reference databasing as well as preclinical and clinical drug metabolism and pharmacokinetics (DMPK) and toxicology studies.

Hamilton Robotics (Reno, NV, USA) in collaboration with GE Healthcare (Chalfont St. Giles, UK) Life Sciences introduces the easyPunch STARlet workstation, the first fully automated system integrating sample card punching and liquid handling into one easy workflow.

The easyPunch STARlet system, made in Hamilton’s Bonaduz (Switzerland) facility, incorporates punching of GE Healthcare Whatman FTA and DMPK sample collection cards with automated sample extraction, eliminating typical logjams in laboratory processes.

“Because many labs lack a fully automated workflow, thousands of samples such as blood and saliva placed on punch cards are waiting long periods to be processed for critical studies and forensic analysis,” said Stefan Mauch, product manager of the easyPunch STARlet system. “Until now, sample card punching for analysis preparation required tedious manual work or separate semiautomated instruments and an operator. Researchers or technicians had to be consistently precise and experienced when handling and tracking samples, or the results could be compromised.”

The easyPunch workstation is based on the Hamilton Robotics Microlab STARlet platform and features two special modules and robotic arms for transporting and punching paper cards. The samples are monitored by effective tracking software to remove any risk of sample identification errors. The total process is tracked using imaging recognition. Hamilton’s proprietary software, based on industrial machine vision technology, provides complete control and monitoring of the punching process. The software recognizes the position and size of the card, identifies the sample by reading the barcode, and determines the punch area. The workstation also takes a picture of the target well to ensure the punch has arrived in the designated well.

Compatibility with library information-management systems (LIMS) and full traceability ensure that data can be linked effectively to each sample. The modular nature of the system enables incorporation of other devices, such as a centrifuge and a plate sealer, thus potentially integrating the entire workflow.

“Ease of use makes this workstation an attractive solution for repetitive tasks in forensic and biopharma sample handling,” remarked Navjot Kaur, product manager at Hamilton Robotics in Reno, Nevada. “Currently technicians manually clean between samples, but the easyPunch STARlet system performs this step automatically, reducing cross-contamination. Barcode reading and imaging support full traceability and reporting of samples, both during punching and downstream processing.”

Hamilton Company is a global leader in the development and manufacture of process measurement, liquid handling, robotics and storage solutions, serving customers in academic and private research laboratories, pharmaceutical, and clinical diagnostic companies and government institutions.

Related Links:

Hamilton Robotics
GE Healthcare




Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.