Features Partner Sites Information LinkXpress
Sign In
Advertise with Us


12 Nov 2016 - 16 Nov 2016
16 Nov 2016 - 19 Nov 2016

Sample Card Punching Workstation Provides High-Throughput Sample Prep

By BiotechDaily International staff writers
Posted on 22 Nov 2012
Print article
Image: The easyPunch STARlet workstation (Photo courtesy of Hamilton Robotics).
Image: The easyPunch STARlet workstation (Photo courtesy of Hamilton Robotics).
A new laboratory workstation has been developed to minimize human error and enables high-throughput sample preparation for a range of applications, such as forensic reference databasing as well as preclinical and clinical drug metabolism and pharmacokinetics (DMPK) and toxicology studies.

Hamilton Robotics (Reno, NV, USA) in collaboration with GE Healthcare (Chalfont St. Giles, UK) Life Sciences introduces the easyPunch STARlet workstation, the first fully automated system integrating sample card punching and liquid handling into one easy workflow.

The easyPunch STARlet system, made in Hamilton’s Bonaduz (Switzerland) facility, incorporates punching of GE Healthcare Whatman FTA and DMPK sample collection cards with automated sample extraction, eliminating typical logjams in laboratory processes.

“Because many labs lack a fully automated workflow, thousands of samples such as blood and saliva placed on punch cards are waiting long periods to be processed for critical studies and forensic analysis,” said Stefan Mauch, product manager of the easyPunch STARlet system. “Until now, sample card punching for analysis preparation required tedious manual work or separate semiautomated instruments and an operator. Researchers or technicians had to be consistently precise and experienced when handling and tracking samples, or the results could be compromised.”

The easyPunch workstation is based on the Hamilton Robotics Microlab STARlet platform and features two special modules and robotic arms for transporting and punching paper cards. The samples are monitored by effective tracking software to remove any risk of sample identification errors. The total process is tracked using imaging recognition. Hamilton’s proprietary software, based on industrial machine vision technology, provides complete control and monitoring of the punching process. The software recognizes the position and size of the card, identifies the sample by reading the barcode, and determines the punch area. The workstation also takes a picture of the target well to ensure the punch has arrived in the designated well.

Compatibility with library information-management systems (LIMS) and full traceability ensure that data can be linked effectively to each sample. The modular nature of the system enables incorporation of other devices, such as a centrifuge and a plate sealer, thus potentially integrating the entire workflow.

“Ease of use makes this workstation an attractive solution for repetitive tasks in forensic and biopharma sample handling,” remarked Navjot Kaur, product manager at Hamilton Robotics in Reno, Nevada. “Currently technicians manually clean between samples, but the easyPunch STARlet system performs this step automatically, reducing cross-contamination. Barcode reading and imaging support full traceability and reporting of samples, both during punching and downstream processing.”

Hamilton Company is a global leader in the development and manufacture of process measurement, liquid handling, robotics and storage solutions, serving customers in academic and private research laboratories, pharmaceutical, and clinical diagnostic companies and government institutions.

Related Links:

Hamilton Robotics
GE Healthcare

Print article


Drug Discovery

view channel
Image: Positive alpha-synuclein staining of a Lewy body from a patient with Parkinson\'s disease (Photo courtesy of Wikimedia Commons).

Bifunctional Dimer Drugs Prove Effective in Parkinson's Disease Yeast Model

A team of Canadian neurodegenerative disease researchers used a yeast model system to identify novel drug compounds that were able to block the misfolding of alpha- synuclein (AS) protein, which characterizes... Read more


view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more


view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.