Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Prototype Ultrasound Bioreactor Assesses Engineers Tissue while Making It

By BiotechDaily International staff writers
Posted on 17 May 2012
Image: Biomedical engineer Jenni Popp with NIST’s prototype bioreactor for tissue engineering. The bioreactor both stimulates and evaluates engineered tissue as it grows (Photo courtesy of Burrus/NIST).
Image: Biomedical engineer Jenni Popp with NIST’s prototype bioreactor for tissue engineering. The bioreactor both stimulates and evaluates engineered tissue as it grows (Photo courtesy of Burrus/NIST).
American scientists have devised a prototype bioreactor--a device for culturing cells to create engineered tissues--that both stimulates and assesses tissue as it grows, simulating natural mechanisms while eliminating the need to stop periodically to snip off samples for analysis. Tissue created in this manner might soon be used to replace, for example, injured or diseased cartilage in the hip and knee.

Conventional techniques for evaluating the development and properties of engineered tissue are time-consuming, destructive and need to be repeated many times. By using ultrasound to monitor tissue during processing without destroying it, the novel bioreactor could be a faster and less expensive alternative.
“Most bioreactors don’t do any type of nondestructive evaluation,” said the US National Institute of Standards and Technology (NIST; Boulder, CO, USA) postdoctoral researcher Jenni Popp, first author of a new article about the instrument, published online April 26, 2012, in the Journal of Medical Devices, and to be published the June 2012 print issue. “Having some sort of ongoing evaluation of the developing tissue is definitely novel.”

Natural cartilage is created by specialized cells that generate large amounts of structural proteins to weave a tough support material called extracellular matrix. Lacking blood vessels, cartilage has limited capability to heal from arthritis, injuries, or other defects. Damage can be treated with drugs or joint replacement but results can be imperfect. Engineered tissue is used in some medical treatments but is not yet a routine option to metal or plastic joint replacements. The NIST bioreactor provides researchers with a noninvasive way to monitor vital structural changes in developing tissue.

The NIST/CU bioreactor can fit inside a standard incubator, which controls temperature and acidity in the growth environment. The bioreactor applies force to stimulate five small cubes of cartilage cells embedded in water-based gels. The mechanical force mimics the natural stimuli needed for the cells to create matrix proteins and develop the structure and properties of real cartilage. Ultrasound techniques monitor tissue changes over time, while a digital video microscope takes images.

Early research indicates the bioreactor both stimulates and monitors development of cells, matrix content, and scaffolds to make three-dimensional (3D) engineered cartilage. The cell-laden gels were stimulated twice daily for an hour. Sulfated glycosaminoglycan (sGAG)--which combines with fibrous proteins to form the extracellular matrix--increased significantly after seven days. This structural change was detected by a significant decrease in ultrasound signals after seven days.
The research described in the article was performed at and led by NIST. The bioreactor is a collaborative project with several investigators from the University of Colorado Boulder (CU; USA) department of chemical and biological engineering.

NIST and CU researchers are continuing to develop ultrasonic measurement methods and plan to conduct longer experiments. The bioreactor is also being used by other academic researchers as a tool for confirming mathematical models of biokinetics, the study of growth and movement in developing tissue.

Related Links:

National Institute of Standards and Technology

University of Colorado Boulder



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.