Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Faster 3D Nanoimaging with Full Color Synchrotron Light Under Development

By BiotechDaily International staff writers
Posted on 27 Jul 2011
Researchers can now see objects more completely and faster at the nanoscale level due to utilizing the full spectrum of synchrotron light, creating avenues for faster three-dimensional (3D) nanoimaging. This new methodology will provide for enhanced nanoimaging for examining biosamples for medical research, improved drug development, and advanced materials for engineering.

Using the Advanced Photon Source at Argonne National Laboratory (Argonne, IL, USA), researchers from the ARC Center of Excellence for Coherent X-ray Science (CXS), headquartered at the University of Melbourne, Australia, revealed that by utilizing the full spectrum of colors of the synchrotron, they increased the clarity of biologic samples and obtained a 60-fold increase in the speed of imaging.

Prof. Keith Nugent, a professor of physics at the University of Melbourne and research director of CXS, said the discovery was an exciting development. “Typically for best imaging, researchers need to convert samples to crystals, but this is not always possible in all samples,” he said. “This discovery of utilizing full color synchrotron light to improve precision and speed of imaging has huge potential in the field.”

The international project was led by Dr. Brian Abbey of the University of Melbourne’s School of Physics and CXS, whose team made the discovery. “We will now be able to see things in detail at the nanoscale much more easily. It is like going from an old film camera to the latest digital SLR. The increase in speed, in particular, opens the way for us to see things faster in 3D at the nanoscale, which has previously taken an impracticably long time,” Dr. Abbey said.

The study was published in the July 2011 issue of the journal Nature Photonics.

Related Links:
Advanced Photon Source
ARC Center of Excellence for Coherent X-ray Science



Channels

Genomics/Proteomics

view channel
Image: Bacteriophage EFDG1 visualized by transmission electron microscopy (TEM) at a magnification of 20,000–30,000 times. Note that some phages are still bound to remains of the dead bacteria (Photo courtesy of the Hebrew University of Jerusalem).

Bacteriophage Therapy Eliminates Multidrug Resistant Bacterial Infections

Bacteriophage therapy has been shown to be an effective approach for treating infections caused by drug-resistant strains of the bacterium Enterococcus faecalis. E. faecalis, a bacterium inhabiting... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.