We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Bile Enables Norovirus to Grow in Laboratory Cell Cultures

By LabMedica International staff writers
Posted on 07 Sep 2016
Print article
Image: Human norovirus particles released into the supernatant of infected cell cultures were detected with electron microscopy (Photo courtesy of the Estes Laboratory, Baylor College of Medicine).
Image: Human norovirus particles released into the supernatant of infected cell cultures were detected with electron microscopy (Photo courtesy of the Estes Laboratory, Baylor College of Medicine).
Bile proved to be the key to the first successful growth of norovirus in laboratory cell cultures.

Noroviruses (NoVs) are a leading cause of gastroenteritis globally, yet the host factors required for NoV infection are poorly understood. Human norovirus will not infect any of the species typically used in biomedical research, such as mice, rats, or rabbits nor will it grow in human cell cultures.

After the failure of many previous attempts to cultivate norovirus in cell cultures, investigators at Baylor College of Medicine (Houston, TX, USA) turned to a recently developed human intestinal epithelial cell culture system that included enterocytes. These novel, multi-cellular human cultures, called enteroids, were made from adult intestinal stem cells from patient tissues.

The investigators reported in the August 25, 2016, online edition of the journal Science that novel cell culture system not withstanding, the method was not impressively successful until they added bile, a critical factor of the intestinal milieu. With the addition of bile, the culture system recapitulated the human intestinal epithelium, permitting human host-pathogen studies of previously non-cultivatable pathogens, and allowed the assessment of methods to prevent and treat human NoV infections.

"When we added bile to the cultures, norovirus strains that did not grow before now grew in large numbers," said senior author Dr. Mary Estes, professor of human and molecular virology and microbiology at Baylor College of Medicine. "People have been trying to grow norovirus in the lab for a very long time. We tried for the last 20 years. Despite all the attempts and the success of growing other viruses, it remained a mystery why noroviruses were so hard to work with. We were able to grow norovirus in cultures that mimic the intestinal environment, where the virus naturally grows, by adding bile to the cultures. Bile is critical for several important bacterial pathogens, but this is the first time it has been shown that bile is important for the replication of human intestinal viruses."

Related Links:
Baylor College of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.