We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




In Vitro Three-Dimensional Culture System Enhances Prostate Cancer Cell Growth

By LabMedica International staff writers
Posted on 07 Jul 2016
Print article
Image: A scanning electron microscope (SEM) micrograph of prostate cancer cells (green) growing in a superporous cryogel with tissue-like elasticity (Photo courtesy of Dr. Bettina Göppert, Karlsruhe Institute of Technology).
Image: A scanning electron microscope (SEM) micrograph of prostate cancer cells (green) growing in a superporous cryogel with tissue-like elasticity (Photo courtesy of Dr. Bettina Göppert, Karlsruhe Institute of Technology).
A team of cancer researchers developed a three-dimensional in vitro culture system for growing prostate cancer cells in an environment that closely mimics the in vivo tumor microenvironment.

The physical and mechanical properties of the tumor microenvironment are crucial for the growth, differentiation, and migration of cancer cells. However, such a microenvironment is not reproduced in vitro due to the geometric constraints of the classic two-dimensional cell culture systems used in many cancer studies. Prostate cancer research, in particular, suffers from the lack of suitable in vitro models.

To correct this deficiency, investigators at the Karlsruhe Institute of Technology (Eggenstein-Leopoldshafen, Germany) generated a three-dimensional in vitro growth system based on a superporous scaffold prepared by cryogelation of poly(ethylene glycol) diacrylate. The resulting structure was a defined elastic matrix for prostate tumor growth with mechanical properties that were very similar to those of natural cell tissue.

The investigators reported in the May 30, 2016, online edition of the journal Small that lymph node carcinoma of the prostate (LNCaP) cells showed a linear growth over 21 days as multicellular tumor spheroids in such a scaffold with points of attachments to the walls of the scaffold. These LNCaP cells responded to the growth promoting effects of androgens and demonstrated a characteristic cytoplasmic-nuclear translocation of the androgen receptor and androgen-dependent gene expression.

Compared to two-dimensional cell culture, the expression or androgen response of prostate cancer specific genes was greatly enhanced in the LNCaP cells grown in the three-dimensional system.

"The paper covers the implementation of the model and shows that it is a long-term stable tissue-like three-dimensional cell culture system, with the help of which hormone-independent prostate-specific gene expression could not only be achieved, but even be reinforced compared to conventional two-dimensional models," said contributing author Dr. Friederike J. Gruhl, a researcher in the Institute of Microstructure Technology at the Karlsruhe Institute of Technology. "This was shown by the cultivation of androgen-sensitive prostate cancer cells (LNCaP). In future, it may be possible to cultivate both healthy cells of the prostate tissue and cancer cells in the three-dimensional cryogel model. This opens up new opportunities for preclinical research and for using it in the clinical development of anti-prostate cancer drugs."

Related Links:
Karlsruhe Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.