We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

By LabMedica International staff writers
Posted on 18 Feb 2015
Print article
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).
Image: The FLUOVIEW FVMPE-RS inverted microscope (Photo courtesy of Olympus).
Image: The FLUOVIEW FVMPE-RS inverted microscope (Photo courtesy of Olympus).
Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from within cell cultures and tissues.

Olympus (Hamburg, Germany) has released two new configurations of the FLUOVIEW FVMPE-RS microscope series, a Gantry microscope system and an inverted microscope system.

In multiphoton microscopy, fluorescence excitation efficiency is maximized by using a short pulse width in the focal plane. However, the pulse width of a femtosecond laser disperses as it passes through optics, broadening the pulse width when the beam exits from an objective. The laser beam-shaping optics establishes a compensatory dispersion, the exact inverse of that produced by the microscope’s optics, thus restoring the ideal pulse width for the specimen.

The high-speed scanner, which is the core of the FLUOVIEW FVMPE-RS, enables observation of ultra-rapid biological responses and can obtain vivid images from as deep as eight millimeters below the tissue surface. This is possible because the 25x water immersion objective with a working distance of two millimeters delivers a high resolution and a wide field of view for deep observation of live specimens. Other objectives in the same family with working distances of four millimeters and eight millimeters deliver maximum performance with fixed transparent specimens for high-definition observation at deep levels and accommodating various immersion solutions. All of these objectives feature correction collars that allow them to correct spherical aberration generated by the difference in refractive index between the immersion solution and the specimen—forming optimal light-condensed spots without energy density loss, even during observations deep within the specimen. In addition, each objective features a wide field design that permits the efficient acquisition of scattered fluorescence photons for bright observations.

The Gantry microscope version features an ultra-stable arch-like structure with considerable space beneath the objective to accommodate samples of varied sizes. A volume 640 millimeters wide, 355 millimeters high, and 520 millimeters deep becomes available if the stage is removed, which allows flexibility to suit different observation purposes.

The configuration of the inverted microscope system has been optimized for observation of cells in three-dimensional cultures, where multiple layers of cells are cultured in a Petri dish or similar vessel. As the objective of the inverted microscope approaches the sample from below, cells that have adhered to the base of the Petri dish can be observed without culture fluid touching the objective.

Related Links:

Olympus


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.