We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Inactivated Bacteria and Excreted Factors for Colorectal Cancer Treatment

By LabMedica International staff writers
Posted on 22 Nov 2015
Print article
Image: Micrograph of the Gram-positive bacillus C. sporogenes (Photo courtesy of the University of Pennsylvania).
Image: Micrograph of the Gram-positive bacillus C. sporogenes (Photo courtesy of the University of Pennsylvania).
Inactivated Clostridium sporogenes bacteria and medium harvested after growth of the bacteria were found to be potent inhibitors of colorectal cancer cells growing on two- and three-dimensional culture platforms.

Since they rely on oxygen molecules to damage the DNA of cancer cells, traditional cancer treatments such as chemotherapy and radiation therapy have limited efficacy for the treatment of colorectal cancer due to reduced blood flow and the lack of oxygen and nutrient flow in the tumor environment.

While bacterial cancer therapy has the potential to overcome the hypoxia problem, it comes with the risk of toxicity and infection. To circumvent these issues, investigators at Nanyang Technological University (Singapore) studied the antitumor effects of non-viable bacterial derivatives of Clostridium sporogenes, an anaerobic, rod-shaped bacterium that produces oval, subterminal endospores and is commonly found in soil. Unlike C. botulinum, it does not produce the botulinum neurotoxins.

The non-viable derivatives examined in this study were heat-inactivated C. sporogenes bacteria (IB) and secreted bacterial proteins in culture media, known as conditioned media (CM). The effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on two-dimensional and three-dimensional platforms.

Results reported in the October 28, 2015, online edition of the journal Scientific Reports revealed that IB significantly inhibited cell proliferation of CT26 cells to 6.3% of the control in 72 hours for the two-dimensional monolayer culture. In the three-dimensional spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the two-dimensional and three-dimensional models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the three-dimensional model was less inhibitory than that of CM.

"We found that even when the C. sporogenes bacteria is dead, its natural toxicity continues to kill cancer cells, unlike the conventional chemotherapy drugs which need oxygen to work," said senior author Dr. Teoh Swee Hin, professor of chemical and biomedical engineering at Nanyang Technological University. "While other research groups have experimented with bacteria therapy to destroy cancer cells, the biggest problem is that live bacteria will grow and proliferate, posing a high risk of infection and increased toxicity to patients. In the NTU study, as the bacteria were already killed by heat, there was no risk of the bacteria multiplying and causing more harm than the desired dose meant to kill colorectal cancer cells."

The next step will be to isolate specific bacterial components that help to kill tumor cells and to develop them into a usable therapy format.

Related Links:
Nanyang Technological University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.