We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Microreactor Enables Evaluation of Drug Toxicity on the Liver

By LabMedica International staff writers
Posted on 26 Aug 2015
Print article
Image: Liver-on-chip device and microscopic image of bionic liver (Photo courtesy of Dr. Yaakov Nahmias, The Hebrew University of Jerusalem).
Image: Liver-on-chip device and microscopic image of bionic liver (Photo courtesy of Dr. Yaakov Nahmias, The Hebrew University of Jerusalem).
A novel three-dimensional microreactor capable of maintaining metabolically active liver cells in vitro for over 28 days under stable oxygen gradients that mimic the in vivo microenvironment of the liver was used to determine why the painkiller acetaminophen (paracetamol) causes damage to this organ.

The liver tissue-based microreactor was the fruit of a project conducted by investigators at The Hebrew University of Jerusalem (Israel) and their colleagues at the Fraunhofer Institute for Cell Therapy and Immunology (Munich, Germany). The device was capable of maintaining the growth of liver cells under carefully controlled conditions for up to 28 days. Mitochondrial respiration was monitored using two-frequency phase modulation of phosphorescent microprobes embedded in the tissue. Phase modulation is focus independent and unaffected by cell death or migration.

The investigators reported in the June 4, 2015, online edition of the journal Archives of Toxicology that the device enabled the sensitive measurement of oxygen dynamics that revealed important information on the drug mechanism of action and transient subthreshold effects. Exposure to the widely used analgesic acetaminophen caused an immediate, reversible, dose-dependent loss of oxygen uptake followed by a slow, irreversible, dose-independent death. Transient loss of mitochondrial respiration was also detected below the threshold of acetaminophen toxicity.

It had been thought that liver toxicity was linked to acetaminophen's toxic byproduct NAPQI (N-acetyl-p-benzoquinone imine), which is normally produced only in small amounts and then almost immediately detoxified in the liver. However, under some conditions in which NAPQI is not effectively detoxified (usually in case of acetaminophen overdose), it causes severe damage to the liver. This becomes apparent three to four days after ingestion and may result in death from fulminant liver failure several days after the overdose. Results obtained with the liver bioreactor demonstrated the importance of tracing toxicity effects over time and suggested that NAPQI-independent targeting of mitochondrial complex III might be responsible for acetaminophen toxicity.

“The liver organs we created were less than a millimeter in diameter and survive for more than a month,” said senior author Dr. Yaakov Nahmias, professor of bioengineering at The Hebrew University of Jerusalem. “We realized that because we are building the organs ourselves, we are not limited to biology, and could introduce electronic and optical sensors to the tissue itself. Essentially we are building bionic organs on a chip. Because we placed sensors inside the tissue, we could detect small and fast changes in cellular respiration that nobody else could. Suddenly nothing we saw made sense.”

Related Links:

The Hebrew University of Jerusalem
Fraunhofer Institute for Cell Therapy and Immunology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.