We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mechanical Stress Modifies Growth of Tumor Cultures and Response to Chemotherapeutic Agents

By LabMedica International staff writers
Posted on 18 Aug 2015
Print article
Image: Electron micrograph showing bone cancer cells populating the surface of a bioscaffold that had been placed in a flow perfusion bioreactor to evaluate the cells' response to the mechanical forces they experience in the body (Photo courtesy of the University of Texas MD Anderson Cancer Center and Rice University).
Image: Electron micrograph showing bone cancer cells populating the surface of a bioscaffold that had been placed in a flow perfusion bioreactor to evaluate the cells' response to the mechanical forces they experience in the body (Photo courtesy of the University of Texas MD Anderson Cancer Center and Rice University).
A more effective method of assessing the response of tumors to chemotherapeutic drugs utilizes three-dimensional culture growth combined with the application of mechanical stress factors that the tumor would experience in vivo.

Investigators at Rice University (Houston, TX, USA) and the University of Texas MD Anderson Cancer Center (Houston, USA) developed a method for culturing Ewing sarcoma (ES) cells on three-dimensional scaffolds within a flow perfusion bioreactor, which provided mechanical stimulation by changing the fluid viscosity and flow rate to induce flow-derived shear stress.

Results published in the August 3, 2015, edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that in the 10 day study, the steady flow of fluid through the scaffold prompted the sarcoma cells to proliferate throughout the structure. Shear stress induced the cells to significantly increase their production of IGF-1 protein and also down-regulated the production of two other cancer-related proteins, c-KIT and HER2, compared with tumors grown in static two-dimensional cultures.

This finding was particularly relevant, given the central role of the IGF-1/IGF-1 receptor (IGF-1R) pathway in ES tumorigenesis and as a promising clinical target. The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system consists of two cell-surface receptors (IGF-IR and IGF-IIR), two ligands (IGF-I and IGF-II), a family of six high-affinity IGF-binding proteins (IGFBP 1-6), as well as associated IGFBP degrading enzymes.

The use of a tissue-engineered model for this study, rather than human tumors or xenografts, enabled precise control of the forces experienced by the ES cells. This controlled environment enabled the observation that flow perfusion enhanced, in a rate-dependent manner, the sensitivity of ES cells to dalotuzumab, a drug that disrupts the IGF-1 pathway. The conditions used in this study allowed the investigators to demonstrate the shear stress-dependent ES cell sensitivity to dalotuzumab, highlighting the importance of biomechanical stimulation on ES-acquired drug resistance to IGF-1R inhibition.

"Mechanical forces are present in our bodies even though we are not always aware of them," said first author Dr. Marco Santoro, a graduate researcher in chemical and biomolecular engineering at The University of Texas MD Anderson Cancer Center. "Our cells are sensitive to the forces around them and change their behavior accordingly. Tumor cells behave the same way, changing their function depending on the forces they sense. For the first time, we showed how the effect of the drug changes according to the forces experienced by the cells. IGF-1 is crucial for this kind of sarcoma, which relies on this mechanism for growth. We show that the higher the mechanical stimulation, the more pronounced the secretion of this particular protein."

Related Links:

Rice University
University of Texas MD Anderson Cancer Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.