We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

By LabMedica International staff writers
Posted on 05 Jul 2015
Print article
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).
Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form and maintain the blood-brain barrier.

Pericytes are critical for maturation of the brain's blood vessels and development of the blood-brain barrier, but their role in maintenance of the adult blood-brain barrier, and how central nervous system pericytes differ from those of other tissues, is less well understood.

Pericytes are contractile cells that wrap around the endothelial cells of capillaries throughout the body. Pericytes are embedded in basement membrane where they communicate with endothelial cells by means of both direct physical contact and paracrine signaling. In the brain, these cells are a key component of the neurovascular unit, which includes endothelial cells, astrocytes, and neurons. Pericytes help sustain the blood–brain barrier as well as several other homeostatic and hemostatic functions of the brain by regulating capillary blood flow, the clearance and phagocytosis of cellular debris, and the permeability of the blood–brain barrier. A deficiency of pericytes in the central nervous system can cause the blood–brain barrier to break down, resulting in inflammation or death of brain tissues.

Investigators at the University of Gothenburg (Sweden) recently demonstrated that the forkhead transcription factor Foxf2 was specifically expressed in pericytes of the brain and that embryos of mice genetically engineered to lack the gene for Foxf2 developed intracranial hemorrhages, perivascular edema, thinning of the vascular basal lamina, and a leaky blood-brain barrier.

FOX (Forkhead box) proteins are a family of transcription factors that play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, and longevity. Many FOX proteins are important to embryonic development. FOX proteins also have pioneering transcription activity by being able to bind condensed chromatin during cell differentiation processes. The defining feature of FOX proteins is the forkhead box, a sequence of 80 to 100 amino acids forming a motif that binds to DNA.

"Mice that have too little or too much Foxf2 develop various types of defects in the brain's blood vessels," said senior author Dr. Peter Carlsson, professor of chemistry and molecular biology at the University of Gothenburg.

Major changes in a region of chromosome six have been associated with an increased risk of stroke, but it has not been known which of the genes in the area were responsible. "The Foxf2 gene is an extremely interesting candidate, as it is located right in the middle of this region, and research is under way now in collaboration with clinical geneticists to investigate the extent to which variations in the Foxf2 gene affect people's risk of suffering a stroke," said Dr. Carlsson.

The study was published in the June 25, 2015, online edition of the journal Developmental Cell.

Related Links:
University of Gothenburg


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.