We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Cholesterol Trafficking in the Mouse Embryo Is Regulated by a snoRNA

By LabMedica International staff writers
Posted on 01 Jul 2015
Print article
Image: Cholesterol–shown here in hamster ovary cells—is a building block of steroid hormones that trigger puberty and support pregnancy (Photo courtesy of Dr. D. Ory, Washington University School of Medicine).
Image: Cholesterol–shown here in hamster ovary cells—is a building block of steroid hormones that trigger puberty and support pregnancy (Photo courtesy of Dr. D. Ory, Washington University School of Medicine).
Cellular cholesterol trafficking in mouse embryos was found to be regulated by U17 snoRNA.

Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs, which are associated with methylation, and the H/ACA box snoRNAs, which are associated with pseudouridylation. Pseudouridine is the C-glycoside isomer of the nucleoside uridine, and it is the most prevalent of the over one hundred different modified nucleosides found in RNA

Investigators at Washington University School of Medicine (St. Louis, MO, USA) used a loss-of-function screening test to look for Chinese hamster ovary cell mutants with defects in intracellular cholesterol trafficking. They isolated a mutant with haploinsufficiency of U17 snoRNA. U17 is an H/ACA orphan snoRNA, for which a function other than ribosomal processing had not previously been identified.

The investigators published results in the June 2, 2015, issue of the journal Cell Metabolism revealing that through expression profiling they had identified HUMMR (hypoxia-upregulated mitochondrial movement regulator) mRNA as a target that was negatively regulated by U17 snoRNA. In experiments conducted on U17 snoRNA-deficient cells, they found that upregulation of HUMMR promoted the formation of ER (endoplasmic reticulum)-mitochondrial contacts, decreasing esterification of cholesterol, and facilitating cholesterol trafficking to mitochondria.

In contrast, in cells that had an abundance of U17 snoRNA, cholesterol was not transported to the mitochondria, and without this raw material, the cells could not synthesize any steroids.

These findings relating to interactions at the molecular level confirmed previous observations that at birth, mice have high levels of U17 snoRNA, which gradually decline as the animals grow and mature. When the mice reach sexual maturity—at about eight weeks—U17 snoRNA levels have fallen, which increases production of steroid hormones.

"The ovaries need to make steroids to support pregnancy when the mice reach sexual maturation. So we think this small RNA is at least one of the regulators of the processes that govern when a mouse becomes fertile," said senior author Dr. Daniel S. Ory, professor of medicine at the Washington University School of Medicine. "This is one of several hundred snoRNAs. Clearly, some of them have functions beyond the traditional understanding of snoRNAs, and perhaps they should be studied more systematically."

Related Links:

Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.