We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Extracellular Protein Kinase Interacts with Broad Spectrum of Potential Substrates

By LabMedica International staff writers
Posted on 01 Jul 2015
Print article
Image: Cells stained orange to illuminate the endoplasmic reticulum and Golgi apparatus, the parts of the cell where the enzyme Fam20C might phosphorylate other proteins (Photo courtesy of University of California, San Diego).
Image: Cells stained orange to illuminate the endoplasmic reticulum and Golgi apparatus, the parts of the cell where the enzyme Fam20C might phosphorylate other proteins (Photo courtesy of University of California, San Diego).
A single enzyme, Fam20C (family with sequence similarity 20, member C), has been linked to the phosphorylation of more than 100 different proteins representing nearly 90% of all phosphorylated secreted proteins.

Fam20C is a Golgi localized serine kinase that phosphorylates both casein and other highly acidic proteins and members of the small integrin-binding ligand, the N-linked glycoproteins family at the target motif serine-X-glucosamine.

Investigators at the University of California, San Diego (USA) utilized CRISPR/Cas9 gene editing as well as mass spectrometry and biochemical techniques to learn more about the role of Fam20C.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location.

The investigators reported in the June 18, 2015, online edition of the journal Cell that use of the CRISPR/Cas system had allowed them to identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, they showed that Fam20C exhibited broader substrate specificity than previously thought. Appreciation of the functional rationale of Fam20C substrates suggested roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion.

“Nearly 60 years of protein phosphorylation research has uncovered many important functions for phosphorylation of proteins inside the cell, so there is no reason to believe these mechanisms will be any different for phosphorylation of proteins outside the cell,” said first author Dr. Sandra Wiley, a staff research associate at the University of California, San Diego. “We are now investigating the biological function and importance of each protein phosphorylated by Fam20C.”

Related Links:

University of California, San Diego


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.