We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Antibody Cocktail Blocks Growth of Drug-Resistant Lung Tumors in Mouse Model

By LabMedica International staff writers
Posted on 17 Jun 2015
Print article
Image: Lung cancer cells (green) are cultured together with normal lung cells (red). The triple-antibody combination EGFR, HER2, and HER3 strongly impairs the survival of tumor cells while sparing normal cells (Photo courtesy of Weizmann Institute of Science).
Image: Lung cancer cells (green) are cultured together with normal lung cells (red). The triple-antibody combination EGFR, HER2, and HER3 strongly impairs the survival of tumor cells while sparing normal cells (Photo courtesy of Weizmann Institute of Science).
Cancer researchers developed a cocktail of three monoclonal antibodies that was able to halt drug-resistant tumor growth in a mouse xenograft lung cancer model.

Lung cancer patients with primary epidermal growth factor receptor (EGFR) mutations usually respond well to treatment with targeted kinase inhibitors, but almost always develop drug acquire resistance, often due to a second-site mutation (T790M). Clinical trials have tested the ability of a monoclonal antibody (mAb) to EGFR but failed to demonstrate any survival benefits despite the fact that the mAB should have blocked activation of the mutated receptor.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) traced the reason for this failure. By using cell lines with the T790M mutation, they discovered that prolonged exposure to mAbs against only the EGFR triggered molecular network rewiring by (i) stimulating the extracellular signal–regulated kinase (ERK) pathway; (ii) inducing the transcription of HER2 (human epidermal growth factor receptor 2) and HER3, which encode other members of the EGFR family, and the gene encoding HGF (hepatocyte growth factor), which is the ligand for the receptor tyrosine kinase MET, a molecule often expressed in metastatic cancers.

To counter the emergence of this new pathway, the investigators developed mAbs against HER2 and HER3. They reported in the June 2, 2015, online edition of the journal Science Signaling that supplementing the EGFR-specific mAb with those targeting HER2 and HER3 suppressed the compensatory feedback loops that had developed in cultured lung cancer cells. The triple mAb combination targeting all three receptors prevented the activation of ERK, accelerated the degradation of the receptors and inhibited the proliferation of tumor cells but not of normal cells. Furthermore, treatment with the antibody cocktail markedly reduced the growth of tumors in mice xenografted with cells that were resistant to combined treatment with erlotinib and the single function-blocking EGFR mAb.

"Treatment by blocking a single target can cause a feedback loop that ultimately leads to a resurgence of the cancer," said senior author Dr. Yosef Yarden, professor of molecular cell biology at the Weizmann Institute of Science. "If we can predict how the cancer cell will react when we block the growth signals it needs to continue proliferating, we can take preemptive steps to prevent this from happening."

Related Links:

Weizmann Institute of Science


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.