We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Mouse Model Demonstrates Importance of Interleukin-6 to Spread of Prostate Cancer

By LabMedica International staff writers
Posted on 14 Jun 2015
Print article
Image: Researchers using RApidCaP, a mouse model of human metastatic prostate cancer, have identified an immune system marker that may help to distinguish patients who will and will not respond to hormone therapy. That marker is IL-6, an immune system component whose presence is indicated in brown patches in the image at left, in a section of lung tissue (blue) colonized by prostate cancer cells. The middle image of the same section of lung tissue indicates activation of STAT3, a protein that is the downstream target of IL-6 signaling. The image at right of the same tissue section demonstrates the presence of PCNA in the invading prostate cells, a marker of metastasis (Photo courtesy of Trotman Laboratory, Cold Spring Harbor Laboratory).
Image: Researchers using RApidCaP, a mouse model of human metastatic prostate cancer, have identified an immune system marker that may help to distinguish patients who will and will not respond to hormone therapy. That marker is IL-6, an immune system component whose presence is indicated in brown patches in the image at left, in a section of lung tissue (blue) colonized by prostate cancer cells. The middle image of the same section of lung tissue indicates activation of STAT3, a protein that is the downstream target of IL-6 signaling. The image at right of the same tissue section demonstrates the presence of PCNA in the invading prostate cells, a marker of metastasis (Photo courtesy of Trotman Laboratory, Cold Spring Harbor Laboratory).
Cancer researchers used a recently developed mouse model of metastatic prostate cancer to determine what factors are involved in the processes that trigger cell proliferation and drive progression of the disease.

Investigators at Cold Spring Harbor Laboratory (NY, USA) worked with the RapidCaP GEM (genetically engineered mouse) modeling system that uses surgical injection for viral gene delivery to the prostate.

Discussing their results in the March 31, 2015, online edition of the journal Cancer Discovery, the investigators explained that this metastasis was driven by MYC, and not AKT, activation. MYC (v-myc myelocytomatosis viral oncogene homolog protein) is a transcription factor that activates expression of a great number of genes through binding on consensus sequences and recruiting histone acetyltransferases (HATs). By acting as a transcriptional repressor in normal cells, MYC has a direct role in the control of DNA replication. Akt, also known as protein kinase B, is a serine/threonine-specific protein kinase that plays a key role in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration.

The investigators showed that cell–cell communication by interleukin-6 (IL-6) drove the AKT–MYC switch through activation of the AKT-suppressing phosphatase PHLPP2 (PH domain and leucine rich repeat protein phosphatase-like), when PTEN and p53 were lost together, but not separately. IL-6 then communicated a downstream program of STAT3 (signal transducer and activator of transcription 3)-mediated MYC activation, which drove cell proliferation.

Loss-of-function mutations of the PTEN (phosphatase and tensin homolog) gene are present in 60% to 70% of metastatic cancers in humans. PTEN acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly. Mutations in the P53 gene contribute to about half of the cases of human cancer. In these mutants normal p53 protein function is blocked, and the protein is unable to stop multiplication of the damaged cell.

IL-6 is secreted by T-cells and macrophages to stimulate immune response during infection and after trauma, especially burns or other tissue damage leading to inflammation. Advanced/metastatic cancer patients have higher levels of IL-6 in their blood. One example of this is pancreatic cancer, with noted elevation of IL-6 present in patients correlating with poor survival rates. Hence, there is an interest in developing anti-IL-6 agents as therapy against many of these diseases.

"Our research suggests that IL-6 could be a marker for when the disease switches to a more dangerous state that is ultimately hormone therapy-resistant," said senior author Dr. Lloyd Trotman, an associate professor at Cold Spring Harbor Laboratory. "We are really hopeful that translating the IL-6 discovery into the clinics could help us stratify patients into good responders and bad responders. For any hospital this would be a major breakthrough. The gain could be immense; because today's problem is that the variability in response of humans to hormone therapy is amazing. For one man this therapy might be great, might reduce disease burden dramatically for many, many, years, and be an extreme benefit. For others there is almost no response, and it is still not clear to clinicians who is who."

Related Links:

Cold Spring Harbor Laboratory


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.