We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Spherical Cell Cultures May Revolutionize the Study of Living Brain Tissues

By LabMedica International staff writers
Posted on 09 Jun 2015
Print article
Image: A cross section of a human cortical spheroid shows dividing neural progenitor cells (green) against a background of non-dividing neural cells (red) (Photo courtesy of the Pasca laboratory, Stanford University).
Image: A cross section of a human cortical spheroid shows dividing neural progenitor cells (green) against a background of non-dividing neural cells (red) (Photo courtesy of the Pasca laboratory, Stanford University).
Spherical cultures of neural-type cells generated from human induced pluripotent stem cells (iPS cells) may represent a major breakthrough in the pursuit of a model system for studying living, organized human brain tissue.

Techniques that allow reprogramming of somatic cells into pluripotent cells that can be differentiated in vitro provide a unique opportunity to study normal and abnormal corticogenesis (development of the brain's cerebral cortex).

In a paper published in the May 25, 2015, online edition of the journal Nature Methods, investigators at Stanford University (Palo Alto, CA) described a simple and reproducible three-dimensional culture approach for generating a laminated cerebral cortex–like structure from pluripotent stem cells that they called human cortical spheroids (hCSs).

To produce hCSs, the investigators created seven batches of iPS cells, from patches of skin obtained from five people. They grew the iPS cells into flat, multicellular colonies on the surface of laboratory dishes. Intact colonies were detached and transferred into special laboratory dishes treated to prevent the cells from adhering to the plastic. Within a few hours, the colonies began to fold upon themselves to create spheres. The young spherical colonies were treated with a combination of growth factors and small molecules to promote their development into neural progenitor cells. After about seven weeks, nearly 80% of the cells in the spheres expressed a protein made by neural tissue, and a further 7% of the cells expressed another protein specifically made by astrocytes. The spheroids grew to be as large as five millimeters in diameter and could be maintained in the laboratory for nine months or more.

Analysis revealed that the spheroids contained neurons from both deep and superficial cortical layers and mimicked in vivo fetal brain development. The neurons were electro-physiologically mature, displayed spontaneous activity, were surrounded by inert astrocytes, and formed functional synapses. Experiments on hCS slices demonstrated that cortical neurons participated in network activity and produced complex synaptic events.

“I am a neurobiologist,” said senior author Dr. Sergiu Pasca, assistant professor of psychiatry and behavioral sciences at Stanford University. “I need to study neurons that are firing. One of the major problems in understanding mental disorders is that we cannot directly access the human brain. These spheroids closely resemble the three-dimensional architecture of the cortex and have gene-expression patterns that mimic those in a developing fetal brain.”

“In contrast to monolayer cultures, we observed an orderly, three-dimensional arrangement of specific types of neuronal cells in the hCSs,” said Dr. Pasca. “Astrocytes are really essential to neuronal signaling, but it has been challenging to efficiently make both neurons and astrocytes at the same time. Until now, researchers have been relying on astrocytes from rodents or human fetal tissue, and trying to grow neurons on top of them. Our system generates astrocytes that develop in concert with and are genetically identical to the surrounding neurons.”

Related Links:

Stanford University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.