We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bile Acids Regulate Expression of a Tumor Suppressive MicroRNA

By LabMedica International staff writers
Posted on 14 Apr 2015
Print article
Image: Structure of the CCNA2 (cyclin A2) protein (Photo courtesy of Wikimedia Commons).
Image: Structure of the CCNA2 (cyclin A2) protein (Photo courtesy of Wikimedia Commons).
A recent paper explained how the tumor suppressive microRNA miR-22 is regulated in cells lining the gastrointestinal tract and how defective regulation leads to various types of cancer.

MicroRNAs (miRNAs) are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. The miRNA miR-22 has long been known for its ability to suppress cancer, but how this action was regulated was not well understood.

Investigators at the University of California, Davis (USA) recently published a study that had been designed to understand the regulation of miR-22 and to identify additional downstream miR-22 targets in liver and colon cells. To this end they worked with a population of mice that had been genetically engineered to lack the gene for the bile acid receptor, farnesoid x receptor (FXR), which moderates bile acid and cholesterol metabolism. Mice lacking FXR spontaneously develop liver cancer. The investigators also examined the expression of miR-22 in human liver cancer and colon cancer specimens.

Results published in the March 6, 2015, issue of the Journal of Biological Chemistry revealed that miR-22 was transcriptionally regulated by FXR through direct binding to an invert repeat one motif located from 1,012 to 1,025 base pairs upstream from miR-22. Among the studied primary and secondary bile acids, chenodeoxycholic acid, which has the highest binding affinity to FXR, induced miR-22 levels in both Huh7 liver and HCT116 colon cells in a dose- and time-dependent manner.

Cyclin A2 (CCNA2) was identified as a miR-22 novel target in liver and colon cancer cells. The sequence of miR-22, which is conserved in mice, rats, humans, and other mammalians, was found to align with the sequence of 3′-UTR of CCNA2. Chenodeoxycholic acid treatment and miR-22 mimics reduced CCNA2 protein and increased the number of G0/G1 Huh7 and HCT116 cells. In mice genetically engineered to lack FXR, reduction of miR-22 was accompanied by elevated hepatic and ileal CCNA2 protein, as well as an increased number of hepatic and colonic Ki-67-positive cells. In humans, the expression levels of miR-22 and CCNA2 were found to be inversely correlated in liver and colon cancers.

"There are quite a few molecules present in the gastrointestinal (GI) tract that regulate miR-22," said senior author Dr. Yu-Jui Yvonne Wan, professor of pathology and laboratory medicine at the University of California, Davis. "If so many chemicals in the GI tract can regulate miR-22, it must be physiologically significant. We needed to better understand the molecules that regulate miR-22 in cancer, as well as the pathways miR-22 controls."

The investigators also found that miR-22 was activated by vitamin D3, which can reduce the toxicity of hydrophobic bile acids. "People who are obese, or eating a high-fat Western diet, tend to have dysregulated bile acid synthesis," said Dr. Wan. "When that happens, FXR can be inactivated, potentially decreasing the level of miR-22, increasing the expression of cyclin A2 and disrupting the cell cycle. So this pathway may play a role in Western diet-associated carcinogenesis. I am not so sure miR-22 is all good. We do not know what it will target in normal cells. Our next step is to identify more miR-22 effects."

Related Links:

University of California, Davis


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.