We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Double Targeting Approach Increases Potential for Cancer Treatment with Oncolytic Viruses

By LabMedica International staff writers
Posted on 02 Mar 2015
Print article
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).
Cancer researchers have used a double targeting approach to direct oncolytic viruses specifically to tumor cells where they reproduce until the cancer cells burst, releasing more viruses to infect and ultimately destroy the tumor.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) modified an oncolytic adenovirus in two ways. At the transductional level, antibodies derived from camels or alpacas (camelids) against the tumor protein human carcinoembryonic antigen (CEA) were incorporated into the viral capsid. These antibodies enabled the virus to selectively infect cancer cells. At the transcriptional level, the gene for C-X-C chemokine receptor type 4 promoter was inserted into the viral genome. This gene would only be activated after successful infection of a cancer cell. The dual targeting mechanism was designed to insure that only cancer cells would be infected and destroyed.

Typically, antibodies are composed of two immunoglobulin (Ig) heavy chains and two Ig light chains. Camelids are unique among mammals as they have fully functional antibodies with two heavy chains, but lack the light chains usually paired with each heavy chain. This feature of camelid antibodies prompted their use for viral targeting.

The potential of the modified adenovirus was evaluated with cancer cells growing in culture. The data, which was reported in the February 18, 2015, online edition of the journal Molecular Therapy—Oncolytics, demonstrated that the double targeting approach increased specificity of infection and efficacy of replication of the oncolytic adenovirus.

“For decades, investigators have been putting human or mouse antibodies on viruses, and they have not worked — the antibodies would lose their targeting ability,” said senior author Dr. David T. Curiel, professor of radiation oncology at the Washington University School of Medicine. “It was a technical problem. During replication, the virus is made in one part of the cell, and the antibody is made in another. To incorporate the two, the antibody is dragged through the internal fluid of the cell. This is a harsh environment for the antibodies, so they unfold and lose their targeting ability. We found that when we incorporated the camelid antibodies into the virus, they retained their binding specificity. This opens the door to targeting these antibodies to specific tumor markers.”

“We want this new level of targeting specificity because it would allow us to inject the virus into the bloodstream, where it would exclusively infect and replicate in tumor cells, even if they are disseminated throughout the body,” said Dr. Curiel. “These viruses are already engineered to replicate only in tumors. These camelid antibodies would enable them to become even more tumor-specific and open the door for use in metastatic cancer.”

Related Links:

Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.