We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Experimental Cancer Drug Disrupts Telomerase Function

By LabMedica International staff writers
Posted on 12 Jan 2015
Print article
Image: Micrograph showing human chromosomes (grey) capped by telomeres (white) (Photo courtesy of the US Department of Energy Human Genome Program).
Image: Micrograph showing human chromosomes (grey) capped by telomeres (white) (Photo courtesy of the US Department of Energy Human Genome Program).
Cancer researchers have published a detailed study of the potential chemotherapeutic drug 6-thio-2'-deoxyguanosine (6-thio-dG), a potent inhibitor of the enzyme telomerase.

A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Telomere regions deter the degradation of genes near the ends of chromosomes by allowing chromosome ends to shorten, which necessarily occurs during chromosome replication. Human telomeres possess a single-stranded DNA (ssDNA) overhang of TTAGGG repeats, which can self-fold into a G-quadruplex structure. Overexpression in cancer cells of the enzyme telomerase, which adds length to telomeres, allows them to divide in perpetuity. Telomerase is activated in most human cancers and is critical for cancer cell growth.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) studied the nucleoside analogue 6-thio-2′-deoxyguanosine (6-thio-dG), which is recognized by telomerase and is incorporated into de novo-synthesized telomeres. This results in modified telomeres, leading to telomere dysfunction, but only in cells expressing telomerase. The investigators worked with cancer cell cultures and with a mouse lung cancer xenograft model.

They reported in the December 16, 2014, online edition of the journal Cancer Discovery that 6-thio-dG, but not 6-thioguanine, induced telomere dysfunction in telomerase-positive human cancer cells and hTERT-expressing human fibroblasts, but not in telomerase-negative cells. Treatment with 6-thio-dG resulted in rapid cell death for the vast majority of the cancer cell lines tested, whereas normal human fibroblasts and human colonic epithelial cells were largely unaffected. In A549 lung cancer cell-based mouse xenograft studies, 6-thio-dG caused a decrease in the tumor growth rate superior to that observed with 6-thioguanine treatment. In addition, 6-thio-dG increased telomere dysfunction in tumor cells in vivo. Unlike many other telomerase-inhibiting compounds, 6-thiodG did not cause serious side effects in the blood, liver, or kidneys of the treated mice.

“We observed broad efficacy against a range of cancer cell lines with very low concentrations of 6-thiodG, as well as tumor burden shrinkage in mice,” said senior author Dr. Jerry W. Shay, professor of cell biology at the University of Texas Southwestern Medical Center. “Since telomerase is expressed in almost all human cancers, this work represents a potentially innovative approach to targeting telomerase-expressing cancer cells with minimal side effects on normal cells. We believe this small molecule will address an unmet cancer need in an under explored area that will be rapidly applicable to the clinic.”

Related Links:

University of Texas Southwestern Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.