We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Scientists Unwind More Mysteries of the Cellular Clock

By LabMedica International staff writers
Posted on 08 Dec 2014
Print article
Image: Color coding of genes activated in the liver (yellow) as waves of their activation relative to the time of day. Zeitbeger times (ZT):  ZT0= 7 am, ZT3=10 am, ZT6=1 pm, etc. (Photo courtesy of Dr. Bin Fang, Perelman School of Medicine, University of Pennsylvania).
Image: Color coding of genes activated in the liver (yellow) as waves of their activation relative to the time of day. Zeitbeger times (ZT): ZT0= 7 am, ZT3=10 am, ZT6=1 pm, etc. (Photo courtesy of Dr. Bin Fang, Perelman School of Medicine, University of Pennsylvania).
A new study surveying circadian gene expression provides a new understanding of how one clock leads to at least 8 different subclocks, and may suggest a new venue for drug treatment of clock-based metabolic disorders.

Human existence is basically circadian in that most people wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day and disruption of those cycles can lead to disorders and diseases. The wheels and springs of the molecular clock underlying these circadian rhythms include transcription factors (TFs) that control oscillation of expression of circadian genes.

Not all circadian cycles peak at the same time – some peak in the morning, others in the evening, etc. The question is how does a single clock keep time in multiple phases at once? 

New findings come from the team of Mitchell Lazar, MD, PhD, and professor at the University of Pennsylvania’s Perelman School of Medicine (Philadelphia, PA, USA) in a report of a genome-wide survey of circadian protein-coding genes and gene-expression enhancers, parts of the “dark matter” of the genome in that they don’t encode for proteins. The team took advantage of new tools based on high-density DNA sequencing to measure the activity of enhancers throughout the day in the livers of mice. They found that many enhancers, like circadian genes themselves, have a daily oscillation that is in phase with nearby genes – both the enhancer and gene activity peak at the same time each day. The activities of the enhancers themselves are, in turn, governed by distinct TFs.

Grouping the enhancers into 8, 3-hour phases based on when they peak, the team asked which TFs are capable of binding to the enhancers in each set. Remarkably, the team found that enhancers that are in the same phase tend to be bound by the same TFs. For instance, one circadian component, CLOCK, binds enhancers that are most active during one particular 3-hour period. Another protein, Rev-erba, binds 12 hours later. Loss of any one of the TFs dysregulates a subset of oscillating genes while leaving genes tuned to other circadian phases unaffected.

“Different transcription factors control different phases,” said Lazar, “That explains how one clock leads to at least 8 different subclocks.”

Also important is that genes that oscillate with the same phase tend to have related functions, which are distinct from the pathways controlled at other times. Genes involved in insulin signaling peak at a different time than genes that control sugar metabolism, for instance.

Lazar suggests it might be possible to tweak pharmaceutical regimens to make them more efficient by delivering drugs only when the pathways they impact are actually active – a strategy that could minimize unintended side effects. Toward “a proof-of-concept for a new principle of drug treatment for metabolic disorders,” he said, “this is a real step in that direction.”

The study, by Fang B, Everett L, Jager J, et al., was published in the journal Cell, online ahead of print November 20, 2014.

Related Links:

Perelman School of Medicine at the University of Pennsylvania
University of Pennsylvania Health System 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.