We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Blocking the Thromboxane Receptor Prevents Alzheimer's Disease in Mouse Model

By LabMedica International staff writers
Posted on 30 Nov 2014
Print article
A recent study carried out on a transgenic mouse model of Alzheimer's disease identified the thromboxane receptor (TP) as an active contributor to the development of the disease and a feasible target for drugs to treat it.

Investigators at Temple University (Philadelphia, PA, USA) had reported previously that 8-isoprostaneF2alpha (8ISO)—a marker for lipid oxidation and an indicator of oxidative stress—increased brain amyloid-beta levels and deposition in the Tg2576 mouse Alzheimer's disease model.

In the current study, the investigators continued this line of research by examining how (8ISO) affected behavior and tau protein metabolism. To this end, they characterized the behavioral, biochemical, and neuropathologic effects of 8ISO in the triple transgenic mouse model.

They reported in the October 10, 2014, online edition of the journal Neurobiology of Aging that compared with controls, the transgenic mice receiving 8ISO showed significant memory deficits, increase in tau phosphorylation, activation of the cyclin kinase-5 pathway, and neuroinflammation. All these effects could be prevented by treatment with drugs that blocked the thromboxane receptor, a G-protein coupled receptor coupled to the G protein Gq.

“Besides the two major signature brain pathologies associated with Alzheimer’s disease, amyloid beta plaques and the tangles which are formed from the phosphorylation of the tau protein, researchers have also known for a while that there is a signature from oxidation stress,” said senior author Dr. Domenico Praticò, professor of pharmacology, microbiology, and immunology in Temple University. “But it has always been believed that oxidative stress was just a bystander and did not have an active function in the development of the disease.”

“For the first time we have identified this receptor as the culprit responsible for the bad things that happen with the disease when high levels of oxygen free radicals are produced,” said Dr. Praticò. “Basically, it sends the wrong message inside the neuronal cells, and with time, this definitely will result in all the clinical manifestations of the disease, such as cognitive impairment, loss of memory, and brain cell death. This indirectly confirmed for us that the free radicals worked through this receptor.”

Related Links:

Temple University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.