We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Open Source Tissue-Based Map of the Human Proteome Launched

By LabMedica International staff writers
Posted on 25 Nov 2014
Print article
Image: The Human Protein Atlas is tissue-based map of the human proteome (Photo courtesy of the Human Protein Atlas).
Image: The Human Protein Atlas is tissue-based map of the human proteome (Photo courtesy of the Human Protein Atlas).
Constructed with 13 million annotated images, an interactive database has been created to show the distribution of proteins in all major tissues and organs of the human body.

Ten years after the completion of the human genome, the Human Protein Atlas program launched a tissue-based atlas on November 11, 2014, covering the protein complement of the human genome. A decade after completing the Human Genome, the Human Protein Atlas, a strategic multinational research project supported by the Knut and Alice Wallenberg Foundation (Stockholm, Sweden), established an open source tissue-based interactive map of the human proteome.

For the first time, the Human Protein Atlas maps the human proteins in all major organs and tissues, showing both proteins restricted to specific tissues, such as the brain, heart, or liver, and those present in all. This important new knowledge resource will prove helpful to researchers world-wide, especially in human health since the vast majority of drugs on the market are designed against proteins. As an open access resource, it is expected to help accelerate the creation of new diagnostics and drugs to treat diseases.

Began in 2003, two years after the first draft of the human genome, it has taken a team of scientists and information technology (IT) engineers over 1,000 man years to complete the Human Protein Atlas to offer an interactive database containing 13 million annotated images. Today, over 100 scientists work in this project, bringing together competence from many different research areas. The interactive database is aimed for researchers interested in human biology as well as researchers working in the field of translational medicine.

On May 29, 2014, Nature published a thematic issue called The Human Proteome with three articles reporting on various international efforts to describe the protein complements of the genome, including an article describing the Swedish-based Protein Atlas effort and its plan to release a first draft based on transcriptomics and protein profiling later in 2014. This release comes after more than 300 peer-review publications from the Protein Atlas team during the last 10 years and is accompanied with a poster in the journal Science, which was published on Nov 7, 2014, complemented with a digital version of the poster at the Protein Atlas portal.

“This is a truly exciting moment to be able to launch this resource to the scientific community with detailed lists of proteins located to the different parts of the human body. The combination of several ‘omics’ technologies has allowed us to map proteins right down to the single cell level in a team of multidisciplinary expertise spanning biotechnology, IT, and medicine. The resource is completely free with unrestricted access,” said Prof. Mathias Uhlén, director of the program.

The Human Protein Atlas project has been set up to allow for a systematic examination of the human proteome using antibody-based proteomics. This is accomplished by combining high-throughput generation of affinity-purified antibodies with protein profiling in a massive variety of tissues and cells collected in tissue microarrays. Confocal microscopy analysis using human cell lines is performed for more detailed protein localization. The program hosts the Human Protein Atlas portal with expression profiles of human proteins in tissues and cells. The main sites are located at AlbaNova and SciLifeLab, KTH-Royal Institute of Technology (Stockholm, Sweden), the Rudbeck Laboratory, Uppsala University (Uppsala, Sweden), and Lab Surgpath (Mumbai, India).

Related Links:

Human Protein Atlas
Knut and Alice Wallenberg Foundation


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.