We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Preserving Endogenous Cardiac Macrophages Following Heart Attack Reduces Scarring and Promotes Healing

By LabMedica International staff writers
Posted on 10 Nov 2014
Print article
Image: Following injury, neonatal mouse hearts (middle) heal well, appearing similar to healthy heart tissue (top). But adult hearts form scar tissue following injury (bottom) (Photo courtesy of Dr. K. Lavine, Washington University School of Medicine).
Image: Following injury, neonatal mouse hearts (middle) heal well, appearing similar to healthy heart tissue (top). But adult hearts form scar tissue following injury (bottom) (Photo courtesy of Dr. K. Lavine, Washington University School of Medicine).
Cardiac disease researchers have identified a distinct population of macrophages within the adult heart that after injury promotes cardiac recovery through cardiomyocyte proliferation and angiogenesis.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) found, however, that following injury to the adult heart, this pool of endogenous macrophages is overrun and crowded out by pro-inflammatory macrophages derived from monocytes that migrate to the site of injury from the bone marrow.

The two types of macrophages can be distinguished by expression of the surface marker CCR2 (C-C chemokine receptor type 2). Macrophages without CCR2 originate in the heart; those with CCR2 come from the bone marrow. CCR2 is a receptor for monocyte chemoattractant protein-1 (CCL2), which is involved in monocyte infiltration in inflammatory diseases such as rheumatoid arthritis as well as in the inflammatory response against tumors.

The investigators induced injuries in a neonatal mouse model that mimicked the damage caused by a heart attack to the adult human heart. They reported in the October 27, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that preventing recruitment of monocyte-derived macrophages to the adult heart preserved endogenous cardiac macrophage subsets, reduced inflammation, and enhanced tissue repair. These findings indicated that endogenous macrophages were key mediators of cardiac recovery and suggested that therapeutics targeting distinct macrophage lineages might serve as novel treatments for heart failure.

“Researchers have known for a long time that the neonatal mouse heart can recover well from injury, and in some cases can even regenerate,” said first author Dr. Kory J. Lavine, instructor in medicine at the Washington University School of Medicine. “If you cut off the lower tip of the neonatal mouse heart, it can grow back. But if you do the same thing to an adult mouse heart, it forms scar tissue. The same macrophages that promote healing after injury in the neonatal heart also are present in the adult heart, but they seem to go away with injury. This may explain why the young heart can recover while the adult heart cannot.”

“When we chemically blocked CCR2 expression, we found that the macrophages from the bone marrow did not come in,” said Dr. Lavine. “And the macrophages native to the heart remained. We saw reduced inflammation in these injured adult hearts, less oxidative damage and improved repair. We also saw new blood vessel growth. By blocking the CCR2 signaling, we were able to keep the resident macrophages around and promote repair.”

Related Links:
Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.