We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Oxygen-Deprived RNA Molecules Found to Lead to Tumor Progression

By LabMedica International staff writers
Posted on 09 Nov 2014
Print article
New research has discovered a previously unknown phenomenon: key regulatory molecules are decreased when deprived of oxygen, which leads to increased cancer progression in vitro and in vivo.

As tumors grow, they can outgrow their blood supply, leaving some of the tumor with areas where the tissue is oxygen starved, a condition known as tumor hypoxia. Conventional wisdom would suggest the lack of oxygen would inhibit growth. However, new insights into hypoxia has been gleaned in a study by investigators from the University of Texas MD Anderson Cancer Center (Houston, TX, USA), which examined at how specific enzymes were impacted. Unexpectedly, hypoxia led to tumor progression. Meaning, cancer cells are clever and able to modify to maintain sustained growth.

“We showed that that hypoxia causes a downregulation of, or decrease in, quantities of Drosha and Dicer, enzymes that are necessary for producing microRNAs (miRNAs). MiRNAs are molecules naturally expressed by the cell that regulate a variety of genes,” said Anil Sood, MD, professor of gynecologic oncology and reproductive medicine and cancer biology. “At a functional level, this process results in increased cancer progression when studied at the cellular level.”

Dr. Sood’s findings were published October 2014 in the journal Nature Communications. Dr. Sood also was part of a study led by the Ontario Cancer Institute (Toronto, Canada), which reported in the same issue on hypoxia and regulation of DICER in breast cancer.

The investigators discovered that hypoxia-altered miRNA’s ability to mature in cells. Given that about one-third of the body’s genes are controlled by miRNA, Dr. Sood noted that it was not surprising that cancer cells have modified miRNA levels and that miRNAs are extensively involved in cancer progression. “Although global miRNA downregulation in cancer has been reported, the mechanism behind it has not been fully understood,” he said. “We already knew that downregulation of the enzymes Drosha and Dicer in ovarian, lung, and breast cancer is associated with poor patient outcomes. In this study, we identified new methods for downregulation of miRNA.”

This chain of events delayed development of miRNA in its tracks, due to hypoxia leading to reduced levels of Drosha and Dicer. Rajesha Rupaimoole, a graduate student in the cancer biology program and first author of the study demonstrated that the disruption of molecular machinery depends on the transcription factors, ETS1 and ELK1 in order to successfully decrease one of the enzymes, Drosha, which accordingly fuels continued tumor growth. Transcription factors are proteins that switch genetic instructions on and off.

Dr. Sood’s team, however, demonstrated that ETS1 and ELK1 could be “silenced” when deprived of oxygen in vivo when they were targeted by specific RNA molecules known as small interfering RNA (siRNA). “The rescue of Drosha by siRNAs targeting ETS1 and ELK1 led to significant tumor regression,” said Mr. Rupaimoole.

With a better determination how hypoxia regulates critical enzymes, Dr. Sood believes that there is potential for a new approach to halting tumor progression. “Use of Drosha- and Dicer-independent siRNA-based gene targeting is an emerging strategy to develop therapies that target undruggable genes,” said Mr. Rupaimoole. “A comprehensive understanding of Drosha and Dicer downregulation under hypoxic conditions is an important leap towards comprehending how miRNA can go awry during cancer progression.”

Related Links:

University of Texas MD Anderson Cancer Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.