We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




A Subpopulation of Melanoma Cells Lacks VEGFR and Resists Antiangiogenic Therapy

By LabMedica International staff writers
Posted on 05 Nov 2014
Print article
Image: An intensity-colored image of blood flow in a PECAM1-positive tumor (Photo courtesy of the University of North Carolina School of Medicine).
Image: An intensity-colored image of blood flow in a PECAM1-positive tumor (Photo courtesy of the University of North Carolina School of Medicine).
Melanoma researchers have discovered a subpopulation of cancer cells that generate new blood vessels by expressing the vascular cell adhesion molecule PECAM1 (platelet endothelial cell adhesion molecule), but not VEGFR-2 (vascular endothelial growth factor), the major signaling molecule normally associated with new blood vessel formation (angiogenesis).

PECAM-1 also known as cluster of differentiation 31 (CD31) is a protein that in humans is encoded by the PECAM1 gene found on chromosome 17. PECAM-1 plays a key role in removing aged neutrophils from the body. It is found on the surface of platelets, monocytes, neutrophils, and some types of T-cells, and makes up a large portion of endothelial cell intercellular junctions. This protein is a member of the immunoglobulin superfamily and is likely involved in leukocyte migration, angiogenesis, and integrin activation.

Investigators at the University of North Carolina (Chapel Hill, USA) were searching for an explanation as to why antiangiogenic drugs targeted at VEGFR often failed to prevent melanoma growth and spread. Towards this end, they reported in the October 22, 2014, online edition of the journal Nature Communications that they had isolated what appeared to be noncancerous endothelial cells from melanoma tumors. However, genetic analysis revealed that these cells resembled cancer cells rather than endothelial cells, and that these cells did not express VEGFR.

Instead of VEGFR these cells expressed the vascular cell adhesion molecule PECAM1 and participated in a PECAM1-dependent form of angiogenesis. Clonally derived PECAM1-positive tumor cells coalesced to form PECAM1-dependent networks in vitro, and they generated well-perfused, VEGF-independent channels in mice.

“These cells looked very different from normal endothelial cells in cultures,” said senior author Dr. Andrew C. Dudley, assistant professor of cell biology and physiology at the University of North Carolina. “We did not know what these cells were. Over the course of a year we found that these cells had several markers similar to melanoma cells. For a long time the hope has been that antiangiogenic therapies would starve tumors of the nutrients they need to thrive, but these drugs have not worked as well as we all had hoped. There are likely several reasons why these drugs have not been effective; our research suggests that these previously uncharacterized cells could be one of the reasons.”

Related Links:
University of North Carolina

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.