We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Important Immune Cell Regulators’ Response Identified

By LabMedica International staff writers
Posted on 14 Sep 2014
Print article
A new strategy could help accelerate laboratory research and the development of potential therapeutics, including vaccines. The technology may also be used to identify the genes that underlie tumor cell development.

There are approximately 40,000 genes in each of the body’s cells, but functions for only approximately 505 of them are known. The conventional approach to determine the function of individual genes is time-consuming. “Typically, studies to identify differentiation players are done one gene at a time,” said Associate Professor Matthew Pipkin of TSRI, who led the study with Prof. Shane Crotty of the La Jolla Institute for Allergy and Immunology (La Jolla, CA, USA). “Our study describes a novel method that can ‘screen’ entire gene families to discover the functions of a large number of individual genes simultaneously, a far more efficient methodology.”

In the new study, published August 23, 2014, in the journal Immunity, the scientists studied genes that control the specialization of T cells into effector cells that eliminate pathogens during infection and “memory” cells that survive long term to maintain guard after the first infection has gone, keeping the same pathogens from re-infecting the body after it has battled them off once.

In their research, the investigators created a mixture of T cells, identical except that the expression of a different gene was interrupted in each cell so the pool of cells represented disruption of a large set of genes. The researchers then assessed the cells’ response to Lymphocytic choriomeningitis virus (LCMV). Before-and-after-infection studies revealed which cells with interrupted genes had emerged after infection; cells in which disruption of a specific gene resulted in it being lost from the mixture indicated the gene played a role in promoting the cell's development into an antiviral T cell.

The study effectively detected two earlier unidentified factors that work together during T cell differentiation—cyclin T1 and its catalytic partner Cdk9, which together form the transcription elongation factor (P-TEFb). While widely expressed throughout the body and used in a number of developmental processes, the factors were previously unknown to be important in the differentiation of both antiviral CD4 and CD8 T cells.

“One of the regulators we uncovered normally enhances effector T cell differentiation at the expense of generating memory T cells and T cells that orchestrate antibody production,” Prof. Pipkin said. “That’s one candidate that you'd want to 'turn down' if you wanted to create more T cells that form memory cells and promote a more effective antibody response—something that would be extremely helpful in developing a vaccine.”

Related Links:

La Jolla Institute for Allergy and Immunology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.