Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Elevated Levels of IgG2 Antibodies Protect Some Types of Gram-Negative Bacteria

By BiotechDaily International staff writers
Posted on 27 Aug 2014
Print article
Image: Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide composed of O-antigen, outer core and inner core joined by a covalent bond. They are found in the outer membrane of Gram-negative bacteria, and elicit strong immune responses in animals (Photo courtesy of Wikimedia Commons).
Image: Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide composed of O-antigen, outer core and inner core joined by a covalent bond. They are found in the outer membrane of Gram-negative bacteria, and elicit strong immune responses in animals (Photo courtesy of Wikimedia Commons).
The finding that an overabundance of a certain class of antibodies protects some bacteria from the effects of antibiotics has marked implications for our understanding of the protection generated by natural infections and for the design of vaccines, which should avoid inducing such inhibitory antibodies.

Investigators at the University of Birmingham (United Kingdom) worked with patients that had bronchiectasis—a chronic infection characterized by persistent cough, shortness of breath, and chest pain—or lung infection caused by the bacterium Pseudomonas aeruginosa.

They reported in the August 2014 online edition of the Journal of Experimental Medicine that in a significant portion of these patients, antibodies protected the bacterium from complement-mediated killing. Strains that resisted antibody-induced, complement-mediated killing produced a lipopolysaccharide containing O-antigen. In particular, they found that inhibition of antibody-mediated killing was caused by excess production of O-antigen–specific antibodies of the IgG2 class. Depletion of IgG2 to O-antigen restored the ability of sera to kill strains with long-chain O-antigen.

Patients with impaired serum-mediated killing of P. aeruginosa by IgG2 were shown to have poorer respiratory function than infected patients who did not produce the inhibitory antibody.

The authors suggested that excessive binding of IgG2 to O-antigen shielded the bacterium from other antibodies that could induce complement-mediated killing. Since there is significant sharing of O-antigen structure between different Gram-negative bacteria, this IgG2-mediated impairment of killing could be operating in other Gram-negative infections as well. These findings have marked implications for understanding the nature of protection generated by natural infections and for the design of vaccines, which should avoid inducing IgG2 class inhibitory antibodies.

Related Links:

University of Birmingham 



Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Sartorius Acquires US Start-up ViroCyt

Sartorius AG (Göttingen, Germany), a pharmaceutical and laboratory equipment provider, has acquired ViroCyt Incorporated (Broomfield, CO, USA), a start-up in the field of rapid virus quantification, in a deal valued at approximately USD 16 million. ViroCyt’s automated platform integrates instruments, software and reagents... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.