We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Brain Tumors Grow by Tapping Preexisting Blood Vessels for Nutrients

By LabMedica International staff writers
Posted on 24 Aug 2014
Print article
Image: Microscopic view of a section of mouse brain shows tiny clusters of tumor cells growing along existing brain blood vessels (Photo courtesy of the University of Michigan).
Image: Microscopic view of a section of mouse brain shows tiny clusters of tumor cells growing along existing brain blood vessels (Photo courtesy of the University of Michigan).
Findings from a new study on how tumors grow and spread in the brain may cause cancer researchers to rethink treatment options based on drugs that block angiogenesis.

According to the angiogenesis theory, tumors that are more than one cubic millimeter in size need to attract or grow their own blood vessels to survive. This theory led to clinical trials with anti-angiogenesis drugs such as bevacizumab and DC101. However, such clinical trials have failed to produce evidence of reduced tumor growth or increased patient survival.

Investigators at the University of Michigan (Ann Arbor, USA) examined this phenomenon in rodents and human cancer patients and by advanced computer modeling.

They reported in the July 2014 issue of the journal Neoplasia that implanted rodent and human brain cancer cells commonly invaded and proliferated within the brain perivascular space. This form of brain tumor growth and invasion was also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma, and peripheral cancer metastasis to the human brain.

Perivascularly invading brain tumors became vascularized by normal brain microvessels when individual glioma cells used perivascular space as a conduit for tumor invasion. Since the cancer cells were obtaining blood from already existing vascular tissues, their growth and spread were not impeded by treatment with antiangiogenic agents.

The experimental findings showing that tumor perivascular spreading was independent of growth of new blood vessels had been predicted by computational modeling. The investigators tested this prediction experimentally by blocking angiogenic signaling using antibodies targeting the VEGF-A (vascular endothelial growth factor) signaling axis. VEGF-A inhibitors failed to block progressive tumor growth or extend median survival in multiple brain tumor models.

"The key question has been to determine how tumor-generating cells grow to form the macroscopic tumor mass that eventually kills the patients," said senior author Dr. Pedro Lowenstein, professor of neurosurgery and cell and developmental biology at the University of Michigan. "We have shown that because of the very high density of endogenous vessels in the brain and central nervous system, the cells grow along those preexisting vessels and eventually divide to fill the space between them, where the distance between any two vessels is very small. This iterative growth along vessels and into the space between means the tumor does not grow like a balloon requiring new vessels to grow into its expanding mass to rescue it, but rather as an accumulation of local small masses which then coalesce into a large tumor."

Related Links:

University of Michigan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.