Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Blocking Nerve Growth Factor Receptor Enables Human Nervous System Regeneration

By BiotechDaily International staff writers
Posted on 20 Aug 2014
Image: The presence of p45 (green staining) and p75 (red staining) indicates that motor neurons increase both p45 and p75 expression after sciatic nerve injury in an animal (Photo courtesy of the Salk Institute for Biological Studies).
Image: The presence of p45 (green staining) and p75 (red staining) indicates that motor neurons increase both p45 and p75 expression after sciatic nerve injury in an animal (Photo courtesy of the Salk Institute for Biological Studies).
The mystery of why the human nervous system is unable to regenerate may have been at least partially solved with the identification of a protein called p75 that seems to block the repair of damaged nerve cells.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) explained that the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, was required as a co-receptor for the Nogo receptor (NgR - reticulon 4 receptor) to mediate the activity of regeneration inhibitors such as Nogo. The Nogo receptor mediates axonal growth inhibition and may play a role in regulating axonal regeneration and plasticity in the adult central nervous system.

p75, also called nerve growth factor receptor, contains an extracellular domain containing four 40-amino acid repeats with six cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain.

In the current study, the investigators used a protein, p45, known to stimulate nervous system regeneration in lower animals but lacking in humans. They found that when added to cultures of human neurons, p45 markedly interfered with the function of p75 as a co-receptor for NgR. p45 bound p75 through both its transmembrane (TM) domain and death domain (DD).

To understand the underlying mechanisms, they determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. They identified the residues involved in this interaction by NMR and co-immunoprecipitation.

Results of these structural and functional studies published in the August 5, 2014, online edition of the journal PLOS Biology revealed that p45 bound specifically to conserved regions in the p75 transmembrane domain and in the intracellular domain and that this binding blocked p75 dimerization along with its downstream signaling. Blocking the activity of p75 allowed nervous tissue to regenerate.

“This research implies that we might be able to mimic neuronal repair processes that occur naturally in lower animals, which would be very exciting,” said senior author Dr. Kuo-Fen Lee, professor of molecular neurobiology at the Salk Institute for Biological Studies. “We do not know why this nerve regeneration does not occur in humans. We can speculate that the brain has so many neural connections that this regeneration is not absolutely necessary.”

Related Links:

Salk Institute for Biological Studies



comments powered by Disqus

Channels

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Lab Technologies

view channel
Image: The UC Santa Cruz Ebola Genome Portal contains links to the newly created Ebola browser and to scientific literature on the deadly virus (Photo courtesy of UCSC).

Ebola Genome Browser Now Online to Help Scientists’ Respond to Crisis

A US genomics institute has just released a new Ebola genome browser to help international researchers develop a vaccine and antiserum to help stop the spread of the Ebolavirus. The investigators led... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.