We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blocking Nerve Growth Factor Receptor Enables Human Nervous System Regeneration

By LabMedica International staff writers
Posted on 20 Aug 2014
Print article
Image: The presence of p45 (green staining) and p75 (red staining) indicates that motor neurons increase both p45 and p75 expression after sciatic nerve injury in an animal (Photo courtesy of the Salk Institute for Biological Studies).
Image: The presence of p45 (green staining) and p75 (red staining) indicates that motor neurons increase both p45 and p75 expression after sciatic nerve injury in an animal (Photo courtesy of the Salk Institute for Biological Studies).
The mystery of why the human nervous system is unable to regenerate may have been at least partially solved with the identification of a protein called p75 that seems to block the repair of damaged nerve cells.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) explained that the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, was required as a co-receptor for the Nogo receptor (NgR - reticulon 4 receptor) to mediate the activity of regeneration inhibitors such as Nogo. The Nogo receptor mediates axonal growth inhibition and may play a role in regulating axonal regeneration and plasticity in the adult central nervous system.

p75, also called nerve growth factor receptor, contains an extracellular domain containing four 40-amino acid repeats with six cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain.

In the current study, the investigators used a protein, p45, known to stimulate nervous system regeneration in lower animals but lacking in humans. They found that when added to cultures of human neurons, p45 markedly interfered with the function of p75 as a co-receptor for NgR. p45 bound p75 through both its transmembrane (TM) domain and death domain (DD).

To understand the underlying mechanisms, they determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. They identified the residues involved in this interaction by NMR and co-immunoprecipitation.

Results of these structural and functional studies published in the August 5, 2014, online edition of the journal PLOS Biology revealed that p45 bound specifically to conserved regions in the p75 transmembrane domain and in the intracellular domain and that this binding blocked p75 dimerization along with its downstream signaling. Blocking the activity of p75 allowed nervous tissue to regenerate.

“This research implies that we might be able to mimic neuronal repair processes that occur naturally in lower animals, which would be very exciting,” said senior author Dr. Kuo-Fen Lee, professor of molecular neurobiology at the Salk Institute for Biological Studies. “We do not know why this nerve regeneration does not occur in humans. We can speculate that the brain has so many neural connections that this regeneration is not absolutely necessary.”

Related Links:

Salk Institute for Biological Studies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.