Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Surface Protein Protects Brain Tumor Cells from Immune Attack

By BiotechDaily International staff writers
Posted on 19 Aug 2014
Image: In mice whose brain tumor cells (in green) could not make galectin-1, the body’s immune system was able to recognize and attack the cells, causing them to die. In this microscope image, the orange areas show where tumor cells had died in just the first three days after the tumor was implanted in the brain. Six days later, the tumor had been eradicated (Photo courtesy of the University of Michigan).
Image: In mice whose brain tumor cells (in green) could not make galectin-1, the body’s immune system was able to recognize and attack the cells, causing them to die. In this microscope image, the orange areas show where tumor cells had died in just the first three days after the tumor was implanted in the brain. Six days later, the tumor had been eradicated (Photo courtesy of the University of Michigan).
Malignant glioma brain tumor cells suppress the natural killer cell (NK) immune response by over expressing the surface protein galectin-1, and suppression of this protein renders the tumor cells susceptible to destruction by the immune system.

Galectin-1 (LGALS1 lectin, galactoside-binding, soluble, 1) is a member of the galectin family of beta-galactoside-binding proteins, which has been implicated in modulating cell-cell and cell-matrix interactions. This protein may act as an autocrine negative growth factor that regulates cell proliferation. Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell.

Investigators at the University of Michigan (Ann Arbor, USA) had been studying gliomas, which make up about 80% of all malignant brain tumors, including anaplastic oligodendrogliomas, anaplastic astrocytomas, and glioblastoma multiforme.

In the current study, they used rodent models to demonstrate that malignant glioma cells suppressed NK immune surveillance by over expressing galectin-1. Conversely, galectin-1 deficient glioma cells could be eradicated by host NK cells prior to the initiation of an anti-tumor T-cell response. Results of in vitro experiments published in the July 18, 2014, online edition of the journal Cancer Research demonstrated that galectin-1 deficient GL26-Cit glioma cells were nearly three times more sensitive to NK-mediated tumor lysis than galectin-1 expressing cells.

“This is an incredibly novel and exciting development, and shows that in science we must always be open-minded and go where the science takes us; no matter where we thought we wanted to go,” said senior author Dr. Pedro Lowenstein, professor of neurosurgery at the University of Michigan. “In this case, we found that over-expression of galectin-1 inhibits the innate immune system, and this allows the tumor to grow enough to evade any possible effective T-cell response. By the time it is detected, the battle is already lost.”

Related Links:

University of Michigan



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.