Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Loss of Endothelial Cell Enzyme Restores Sensitivity to Chemotherapy and Radiation in Nearby Tumor Cells

By BiotechDaily International staff writers
Posted on 04 Aug 2014
Cancer researchers have found that an enzyme produced by cells in the blood vessels that serve tumors triggers the release of signaling molecules that stimulate the repair of damage to the tumor cells caused by treatment with radiation or chemotherapeutic agents.

Investigators at Queen Mary University (London, United Kingdom) examined the role of the enzyme focal adhesion kinase (FAK) in noncancerous endothelial cells in regions of tumor growth.

FAK is a 125-kDa protein that is known to participate in focal adhesion dynamics between cells with a role in motility and cell survival. FAK is a highly conserved, nonreceptor tyrosine kinase originally identified as a substrate for the oncogene protein, tyrosine kinase v-src. This cytoplasmic kinase has been implicated in diverse cellular roles including cell locomotion, mitogen response, and cell survival. FAK is typically located at structures known as focal adhesions, which are multiprotein structures that link the extracellular matrix (ECM) to the cytoplasmic cytoskeleton. It has been shown that when FAK was blocked, breast cancer cells became less metastatic due to decreased mobility.

In the current study, the investigators blocked FAK activity in the cells lining blood vessels in a mouse tumor model. They found that deletion of FAK in endothelial cells had no apparent effect on blood vessel function but induced increased apoptosis and decreased proliferation of tumor cells in doxorubicin- and radiotherapy-treated mice. Mechanistically, they demonstrated that endothelial-cell FAK was required for DNA-damage-induced NF-kappaB activation in vivo and in vitro and for the production of cytokines from endothelial cells. Loss of endothelial-cell FAK reduced DNA-damage-induced cytokine production, thus enhancing chemosensitization of tumor cells to DNA-damaging therapies in vitro and in vivo.

Additional data published in the July 27, 2014, online edition of the journal Nature revealed that that low blood vessel FAK expression was associated with complete remission in human lymphoma.

First author Dr. Bernardo Tavora, a postdoctoral associate at Queen Mary University, said, "This work shows that sensitivity to cancer treatment is related to our own body mistakenly trying to shield the cancer from cell-killing effects caused by radiotherapy and chemotherapy. Although taking out FAK from blood vessels will not destroy the cancer by itself, it can remove the barrier cancer uses to protect itself from treatment."

Related Links:

Queen Mary University




BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.