Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

By BiotechDaily International staff writers
Posted on 22 Jul 2014
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).
Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.

Investigators at Duke University (Durham, NC, USA) fed different groups of mice either a diet rich in saturated fatty acids (SFAs), omega-6 polyunsaturated FAs (PUFAs), or omega-6 PUFAs supplemented with omega-3 PUFAs. OA was induced by destabilizing the medial meniscus. Wound healing was evaluated using an ear punch. OA, synovitis, and wound healing were determined histologically, while bone changes were measured using microCT (computerized tomography).

Results published in the July 10, 2014, online edition of the journal Annals of the Rheumatic Diseases revealed that OA was significantly associated with dietary fatty acid content and serum adipokine levels, but not with body weight. Furthermore, spontaneous activity of the mice was independent of OA development. Small amounts of omega-3 PUFAs (8% by kilocalorie) in a high-fat diet were sufficient to mitigate injury-induced OA. Omega-3 PUFAs significantly enhanced wound repair, while SFAs or omega-6 PUFAs independently increased OA severity, ossification, and scar tissue formation.

“Our results suggest that dietary factors play a more significant role than mechanical factors in the link between obesity and osteoarthritis,” said senior author Dr. Farshid Guilak, professor of orthopedic surgery at Duke University. “While omega-3 fatty acids are not reversing the injury, they appear to slow the progression of arthritis in this group of mice. In fact, omega-3 fatty acids eliminated the detrimental effects of obesity in obese mice. A great next step would be to do a clinical study to look at effect of omega-3 fatty acids post-injury.”


Related Links:
Duke University



Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.