Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

By BiotechDaily International staff writers
Posted on 22 Jul 2014
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).
Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.

Investigators at Duke University (Durham, NC, USA) fed different groups of mice either a diet rich in saturated fatty acids (SFAs), omega-6 polyunsaturated FAs (PUFAs), or omega-6 PUFAs supplemented with omega-3 PUFAs. OA was induced by destabilizing the medial meniscus. Wound healing was evaluated using an ear punch. OA, synovitis, and wound healing were determined histologically, while bone changes were measured using microCT (computerized tomography).

Results published in the July 10, 2014, online edition of the journal Annals of the Rheumatic Diseases revealed that OA was significantly associated with dietary fatty acid content and serum adipokine levels, but not with body weight. Furthermore, spontaneous activity of the mice was independent of OA development. Small amounts of omega-3 PUFAs (8% by kilocalorie) in a high-fat diet were sufficient to mitigate injury-induced OA. Omega-3 PUFAs significantly enhanced wound repair, while SFAs or omega-6 PUFAs independently increased OA severity, ossification, and scar tissue formation.

“Our results suggest that dietary factors play a more significant role than mechanical factors in the link between obesity and osteoarthritis,” said senior author Dr. Farshid Guilak, professor of orthopedic surgery at Duke University. “While omega-3 fatty acids are not reversing the injury, they appear to slow the progression of arthritis in this group of mice. In fact, omega-3 fatty acids eliminated the detrimental effects of obesity in obese mice. A great next step would be to do a clinical study to look at effect of omega-3 fatty acids post-injury.”


Related Links:
Duke University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.