Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Deletion of the FOXO1 Gene Transforms Intestinal Cells into Insulin Producers

By BiotechDaily International staff writers
Posted on 13 Jul 2014
Image: Human gastrointestinal cells from patients were engineered to express insulin (fluorescent green) in the laboratory (Photo courtesy of Columbia University).
Image: Human gastrointestinal cells from patients were engineered to express insulin (fluorescent green) in the laboratory (Photo courtesy of Columbia University).
After having demonstrated that gut endocrine progenitor cells of mice could be differentiated into glucose-responsive, insulin-producing cells by elimination of the transcription factor FOXO1 (forkhead box O1), diabetes researchers have extended these findings by obtaining similar results with human gut endocrine progenitor and serotonin-producing cells.

Generation of alternative sources of insulin-producing beta-cells has been a goal of researchers in the field of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into beta-like-cells, investigators at Columbia University (New York, NY, USA) have shown that shown that mouse intestinal cells could be transformed into insulin-producing cells by deactivating the cells’ FOXO1 gene.

In a paper published in the June 30, 2014, online edition of the journal Nature Communications, the investigators revealed that FOXO1 was present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells, they demonstrated that inhibition of FOXO1 using a dominant-negative mutant or Lentivirus-encoded small hairpin RNA promoted generation of insulin-positive cells that expressed all markers of mature pancreatic beta-cells and survived in vivo following transplantation into mice.

“People have been talking about turning one cell into another for a long time, but until now we had not gotten to the point of creating a fully functional insulin-producing cell by the manipulation of a single target,” said senior author Dr. Domenico Accili, professor of diabetes at Columbia University. “By showing that human cells can respond in the same way as mouse cells, we have cleared a main hurdle and can now move forward to try to make this treatment a reality.”

Related Links:

Columbia University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.