Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Deletion of the FOXO1 Gene Transforms Intestinal Cells into Insulin Producers

By BiotechDaily International staff writers
Posted on 13 Jul 2014
Image: Human gastrointestinal cells from patients were engineered to express insulin (fluorescent green) in the laboratory (Photo courtesy of Columbia University).
Image: Human gastrointestinal cells from patients were engineered to express insulin (fluorescent green) in the laboratory (Photo courtesy of Columbia University).
After having demonstrated that gut endocrine progenitor cells of mice could be differentiated into glucose-responsive, insulin-producing cells by elimination of the transcription factor FOXO1 (forkhead box O1), diabetes researchers have extended these findings by obtaining similar results with human gut endocrine progenitor and serotonin-producing cells.

Generation of alternative sources of insulin-producing beta-cells has been a goal of researchers in the field of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into beta-like-cells, investigators at Columbia University (New York, NY, USA) have shown that shown that mouse intestinal cells could be transformed into insulin-producing cells by deactivating the cells’ FOXO1 gene.

In a paper published in the June 30, 2014, online edition of the journal Nature Communications, the investigators revealed that FOXO1 was present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells, they demonstrated that inhibition of FOXO1 using a dominant-negative mutant or Lentivirus-encoded small hairpin RNA promoted generation of insulin-positive cells that expressed all markers of mature pancreatic beta-cells and survived in vivo following transplantation into mice.

“People have been talking about turning one cell into another for a long time, but until now we had not gotten to the point of creating a fully functional insulin-producing cell by the manipulation of a single target,” said senior author Dr. Domenico Accili, professor of diabetes at Columbia University. “By showing that human cells can respond in the same way as mouse cells, we have cleared a main hurdle and can now move forward to try to make this treatment a reality.”

Related Links:

Columbia University



WATERS CORPORATION

Channels

Business

view channel

License Agreement to Promote Development of Therapeutic CDK Inhibitors

A license agreement has been signed that was designed to promote the development and commercialization of a series of highly-selective cyclin-dependent kinase 7 (CDK7) inhibitors for the treatment of cancer, inflammation, and viral infections. Cyclin-dependent kinases (CDKs) play a pivotal role in cell cycle control... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.