Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Molecular Interactions Identified That Block Protein Transfer into Mitochondria of Huntington's Disease Neurons

By BiotechDaily International staff writers
Posted on 08 Jul 2014
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Researchers have identified a protein complex that interacts with the mutated form of huntingtin protein to impair transport of proteins into the mitochondria of brain cells, which leads to their malfunction and the loss of neurons that characterizes Huntington's disease.

Huntington’s disease is caused by a dominant gene that encodes a protein known as huntingtin (Htt). The 5' end of the Huntington's disease gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of Htt is broken down into toxic peptides, which contribute to the pathology of the syndrome.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) and their colleagues at the University of Pittsburgh (PA, USA) worked with in vitro culture models and with a mouse model that mimicked the early stages of Huntington's disease.

They reported in the May 18, 2014, online edition of the journal Nature Neuroscience that recombinant mutant Htt directly inhibited mitochondrial protein import in their culture model. Furthermore, mitochondria from the brain synaptosomes of presymptomatic Huntington's disease model mice and from mutant Htt-expressing primary neurons exhibited a protein import defect, suggesting that deficient protein import was an early event in Huntington's disease.

At the molecular level, the investigators spotted interactions between mutant Htt and the TIM23 (translocase of inner mitochondrial membrane 23) mitochondrial protein import complex. Overexpression of TIM23 complex subunits attenuated the mutant Htt–induced mitochondrial import defect and subsequent neuronal death, which demonstrated that deficient mitochondrial protein import caused mutant Htt-induced neuronal death.

“We showed the problem could be fixed by making cells overproduce the proteins that make this transfer possible,” said first author Dr. Hiroko Yano, assistant professor of neurological surgery, neurology, and genetics at the Washington University School of Medicine. “We do not know if this will work in humans, but it is exciting to have a solid new lead on how this condition kills brain cells.”

Related Links:

Washington University School of Medicine
University of Pittsburgh 



Channels

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.