Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Molecular Interactions Identified That Block Protein Transfer into Mitochondria of Huntington's Disease Neurons

By BiotechDaily International staff writers
Posted on 08 Jul 2014
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Researchers have identified a protein complex that interacts with the mutated form of huntingtin protein to impair transport of proteins into the mitochondria of brain cells, which leads to their malfunction and the loss of neurons that characterizes Huntington's disease.

Huntington’s disease is caused by a dominant gene that encodes a protein known as huntingtin (Htt). The 5' end of the Huntington's disease gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of Htt is broken down into toxic peptides, which contribute to the pathology of the syndrome.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) and their colleagues at the University of Pittsburgh (PA, USA) worked with in vitro culture models and with a mouse model that mimicked the early stages of Huntington's disease.

They reported in the May 18, 2014, online edition of the journal Nature Neuroscience that recombinant mutant Htt directly inhibited mitochondrial protein import in their culture model. Furthermore, mitochondria from the brain synaptosomes of presymptomatic Huntington's disease model mice and from mutant Htt-expressing primary neurons exhibited a protein import defect, suggesting that deficient protein import was an early event in Huntington's disease.

At the molecular level, the investigators spotted interactions between mutant Htt and the TIM23 (translocase of inner mitochondrial membrane 23) mitochondrial protein import complex. Overexpression of TIM23 complex subunits attenuated the mutant Htt–induced mitochondrial import defect and subsequent neuronal death, which demonstrated that deficient mitochondrial protein import caused mutant Htt-induced neuronal death.

“We showed the problem could be fixed by making cells overproduce the proteins that make this transfer possible,” said first author Dr. Hiroko Yano, assistant professor of neurological surgery, neurology, and genetics at the Washington University School of Medicine. “We do not know if this will work in humans, but it is exciting to have a solid new lead on how this condition kills brain cells.”

Related Links:

Washington University School of Medicine
University of Pittsburgh 



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.