Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

A MicroRNA Regulates the Mechanism That Prevents Osteoporosis and Bone Metastasis

By BiotechDaily International staff writers
Posted on 07 Jul 2014
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
A study conducted on a mouse model of osteoporosis found that animals with higher than normal levels of the microRNA (miRNA) miR-34a were protected from the syndrome by having increased bone mass and reduced bone breakdown.

MiRNAs are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) have been studying how microRNAs were involved in regulating skeletal biology. To this end, they used mouse models that either underexpressed or overexpressed miR-34a.

They reported in the June 25, 2014, online edition of the journal Nature that miR-34a-overexpressing transgenic mice exhibited lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibited elevated bone resorption and reduced bone mass. At the cellular level it was found that miR-34a or molecules that mimicked the function of miR-34a blocked the development of osteoclasts (cells that cause destruction of bone), which make the bone less dense and prone to fracture. High levels of bone destruction and reduced bone density caused by excessive numbers of osteoclasts are characteristic of osteoporosis.

The investigators pointed out that the mechanisms involved in development of osteoporosis were similar to those that allow certain cancers to metastasize into bone tissue.

“This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone,” said senior author Dr. Yihong Wan, assistant professor of pharmacology at the University of Texas Southwestern Medical Center. “Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well.”

Related Links:

University of Texas Southwestern Medical Center


Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.