Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Mutations in the Apolipoprotein C3 Gene Lower Triglyceride Levels and Reduce Heart Disease Risk

By BiotechDaily International staff writers
Posted on 30 Jun 2014
Mutations, which prevent the normal functioning of the APOC3 (apolipoprotein C3) gene, lower blood triglyceride levels and reduce the risk of developing coronary artery disease (CAD).

Apolipoprotein C3 is a very low density lipoprotein (VLDL) protein. APOC3 inhibits lipoprotein lipase and hepatic lipase and is thought to delay catabolism of triglyceride-rich particles.

To evaluate the linkage between triglycerides and APOC3 and the risk of developing CAD, investigators at Harvard Medical School (Cambridge, MA, USA) and colleagues at the University of Texas Health Science Center (Houston, USA) and the University of Washington (Seattle, USA) sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the [US] National Heart, Lung, and Blood Institute's Exome Sequencing Project. The investigators conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels.

After identifying four APOC3 mutations that lowered levels of circulating triglycerides, the investigators evaluated their association with the risk of coronary heart disease in 110,970 persons.

Results revealed that approximately one in 150 persons (0.67%) in the study was a heterozygous carrier of at least one of the four triglyceride-lowering mutations. Triglyceride levels in the carriers were 39% lower than levels in non-carriers, and circulating levels of APOC3 in carriers were 46% lower than levels in non-carriers. The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 non-carriers.

"The combination of our genetic results, together with recent clinical trials of drugs that raised HDL levels but failed to prevent heart disease, are turning decades of conventional wisdom on its head," said senior author Dr. Sekar Kathiresan, associate professor of medicine at Harvard Medical School. "HDL and triglycerides are both correlated with heart attack, and have an inverse relationship with one another—the lower the HDL, the higher the triglycerides. It has long been presumed that low HDL is the causal factor in heart disease, and triglycerides are along for the ride. But our genetic data indicate that the true causal factor may not be HDL after all, but triglycerides."

"Although statins remain a powerful arrow in the quiver, the notion of residual risk of coronary heart disease continues to be a significant clinical problem," said Dr. Kathiresan. "Our study really reinvigorates the idea of lowering triglycerides and specifically, by blocking APOC3, as a viable therapeutic strategy for addressing residual risk."

The study was published in the June 18, 2014, online issue of the New England Journal of Medicine (NEJM).

Related Links:

Harvard Medical School
University of Texas Health Science Center
University of Washington



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.