Features Partner Sites Information LinkXpress
Sign In
Demo Company

Creation of a Weakly Virulent Strep A Mutant May Boost Vaccine Development

By BiotechDaily International staff writers
Posted on 23 Jun 2014
Print article
Image: Electron micrograph, false color, of group A Streptococcus bacteria (Photo courtesy of the University of California, San Diego).
Image: Electron micrograph, false color, of group A Streptococcus bacteria (Photo courtesy of the University of California, San Diego).
Creation of a mutated variety of Group A Streptococcus (GAS) bacteria with reduced virulence but complete immunological expression may pave the way for development of a safe vaccine to prevent infections such as strep throat, necrotizing fasciitis, and rheumatic heart disease, which are caused by these organisms.

All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has so far been attributed to this conserved antigen.

Investigators at the University of California, San Diego (USA) recently identified the genetic locus for GAC and used this knowledge to create a strep A mutant that lacked the GlcNAc side-chain addition. They reported in the June 11, 2014, issue of the journal Cell Host & Microbe that this mutant was significantly less virulent than the wild type organism in two infection models, in association with increased sensitivity to neutrophil killing, platelet-derived antimicrobials in serum, and the antimicrobial peptide LL-37.

The investigators also showed that antibodies to GAC lacking the GlcNAc side chain and containing only polyrhamnose promoted killing of multiple GAS serotypes and protected against systemic GAS challenge after passive immunization.

These findings demonstrated that the Lancefield antigen played a functional role in GAS pathogenesis, and that a deeper understanding of this unique polysaccharide has implications for vaccine development.

“It is satisfying to find that a fundamental observation regarding the genetics and biochemistry of the pathogen can have implications not only for strep disease pathogenesis, but also for vaccine design,” said senior author Dr. Victor Nizet, professor of pediatrics and pharmacy at the University of California, San Diego.

“Most people experience one or more painful strep throat infections as a child or young adult. Developing a broadly effective and safe strep vaccine could prevent this suffering and reduce lost time and productivity at school and work, estimated to cost two billion USD annually.”

Related Links:
University of California, San Diego

Print article



view channel
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.... Read more


view channel
Image: Structure of the protein encoded by the CFTR gene (Photo courtesy of Wikimedia Commons).

Advanced Gene Therapy Cures Cystic Fibrosis in Culture and Mouse Models

Improvements in gene therapy technology enabled restoration of ion channel function in cultures of cells from cystic fibrosis (CF) patients and in a CF mouse model. In cystic fibrosis, mutations of... Read more

Lab Technologies

view channel
Image:  The BioSpa 8 Automated Incubator (Photo courtesy of BioTek Instruments).

Smart Incubator System Automates Live Cell Assay Operations

A new instrument that automates laboratory workflow by linking microplate washers and dispensers with readers and imaging systems is now available for biotech and other life sciences researchers.... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.