Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Antisynuclein Monoclonal Antibody Reverses Parkinson's Disease Symptoms in Culture and Mouse Models

By BiotechDaily International staff writers
Posted on 23 Jun 2014
Image: Lewy body (brown) from the brain of a Parkinson\'s disease patient (Photo courtesy of the University of Pennsylvania).
Image: Lewy body (brown) from the brain of a Parkinson\'s disease patient (Photo courtesy of the University of Pennsylvania).
The development of Parkinson's disease in a mouse model was blocked by treatment with monoclonal antibodies directed at alpha-synuclein (alpha-syn), the main protein component of the Lewy bodies and Lewy neurites that characterize the disease.

A Lewy body is composed of the protein alpha-synuclein associated with other proteins, such as ubiquitin, neurofilament protein, and alpha B crystalline. Similar to Lewy bodies, Lewy neurites are proteinaceous formations found in neurons of the diseased brain, comprising abnormal alpha-syn filaments and granular material. Like Lewy bodies, Lewy neurites are a feature of alpha-synucleinopathies such as dementia with Lewy bodies, Parkinson's disease, and multiple system atrophy. They are also found in the CA2-3 region of the hippocampus in Alzheimer's disease.

Investigators at the University of Pennsylvania (Philadelphia, USA) worked with culture and mouse models of Parkinson's disease that they had established during prior studies. Using these model systems they had found that synthetic preformed alpha-syn fibrils recruited endogenous alpha-syn and induced Lewy body/Lewy neurite pathology in neuron cultures and test animals, thereby implicating propagation and cell-to-cell transmission of pathological alpha-syn as mechanisms for the progressive spread of Lewy bodies and Lewy neurites.

In the current study they introduced the anti-alpha-syn monoclonal antibody Syn303 into the model systems. They reported in the June 12, 2014, online edition of the journal Cell Reports that alpha-syn monoclonal antibodies reduced alpha-syn preformed fibrils-induced Lewy body/Lewy neurite formation and rescued synapse and neuron loss in primary neuronal cultures by preventing both uptake of the preformed fibrils and subsequent cell-to-cell transmission of the disease pathology. Moreover, intraperitoneal (i.p.) administration of the Syn303 antibody into mice injected with alpha-syn preformed fibrils reduced Lewy body/Lewy neurite pathology, ameliorated neuron loss, and improved motor impairments.

"Once we created these models, the first thing that came to mind is immunotherapy," said senior author Dr. Virginia M.Y Lee, professor of pathology and laboratory medicine at the University of Pennsylvania. "If you can develop antibodies that would stop the spreading, you may have a way to at least retard the progression of Parkinson's disease. In animal models the question we want to ask is, can we reduce the pathology and also rescue cell loss to improve the behavioral deficits? But there are some limitations to experiments in live mice since it is difficult to directly study the mechanism of how it works. To do that, we went back to the cell culture model to ask whether or not the antibody basically prevents the uptake of misfolded alpha-syn. The cell culture experiments showed that MAbs prevented the uptake of misfolded alpha-syn fibrils by neurons and sharply reduced the recruitment of natural alpha-syn into new Lewy body aggregates."

Related Links:

University of Pennsylvania



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.