Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Synthetic Peptide Non-Covalently Transports Cancer Drugs Across the Blood-Brain Barrier

By BiotechDaily International staff writers
Posted on 18 Jun 2014
Cancer researchers have used a novel synthetic peptide to transport chemotherapeutic compounds and other small molecules across the blood-brain barrier and into the brains of mice.

The transport peptide, K16ApoE, comprised sixteen lysine residues and 20 amino acids corresponding to the LDLR (low density lipoprotein receptor)-binding domain of apolipoprotein E (ApoE). Investigators at the Mayo Clinic (Rochester, MN, USA) had demonstrated previously that by mimicking a ligand-receptor system, K16ApoE could deliver three different proteins (beta-galactosidase, IgG, and IgM) in a non-covalent fashion across the blood-brain barrier. To their knowledge this was the first report demonstrating successful delivery of various proteins across the blood-brain barrier that did not involve chemically linking the proteins with a carrier entity.

In the current study, the investigators delivered chemotherapeutics and other agents into the brains of mice either by injecting the carrier peptide and the drugs separately or as a mixture via the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a small-molecule drug.

The investigators reported in the May 21, 2014, online edition of the journal PLOS ONE that seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the injection method, brain uptake was 34–50-fold greater for cisplatin and 54–92-fold greater for methotrexate with K16ApoE than without. Visually intense brain-uptake of the dyes Evans Blue, Light Green SF, and Crocein scarlet was also achieved. Direct intracranial injection of Evans Blue showed locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection resulted in the distribution of the dye throughout the brain.

"We know that some chemotherapeutic agents can kill brain tumor cells when they are outside the brain (as in a laboratory test). But because the agents cannot cross the blood-brain barrier, they are not able to kill brain tumor cells inside the brain. With the peptide carrier, these agents can now get into the brain and potentially kill the tumor cells," said senior author Dr. Robert Jenkins a neurology researcher at the Mayo Clinic.

Related Links:

Mayo Clinic



comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.