Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Novel Antisense Compound Reverses Alzheimer's Disease Symptoms in Mouse Models

By BiotechDaily International staff writers
Posted on 02 Jun 2014
An antisense oligonucleotide, which suppresses the mRNA required for synthesis of amyloid-beta protein precursor (AbetaPP), decreased AbetaPP expression and amyloid-beta protein (Abeta) production, and reversed Alzheimer's disease symptoms in mouse models.

Investigators at Saint Louis University (MO, USA) had shown previously that their OL-1 antisense compound rapidly crossed the blood-brain barrier, reversed learning and memory impairments, reduced oxidative stress, and restored brain-to-blood efflux of Abeta in the SAMP8 mouse model. These animals carry a natural mutation causing them to overproduce mouse amyloid beta.

In the current study, the investigators tested OL-1 in the Tg2576 Alzheimer's disease mouse model, which comprises animals that had been genetically engineered to overexpress a mutant form of the human amyloid beta precursor gene.

Results published in the May 2014 issue of the Journal of Alzheimer's Disease revealed that treatment of the Tg2576 mice with OL-1 produced the same reversal of Alzheimer's disease symptoms as had been observed earlier in the SAMP8 mice. Biochemical analyses of brain tissue taken from the treated animals showed significant reduction of AbetaPP signaling and a reduction of indicators of neuroinflammation.

"Our findings reinforced the importance of amyloid beta protein in the Alzheimer's disease process. They suggest that an antisense that targets the precursor to amyloid beta protein is a potential therapy to explore to reversing symptoms of Alzheimer's disease," said senior author Dr. Susan Farr, professor of geriatrics at Saint Louis University. "It reversed learning and memory deficits and brain inflammation in mice that are genetically engineered to model Alzheimer's disease. Our current findings suggest that the compound, which is called antisense oligonucleotide (OL-1), is a potential treatment for Alzheimer's disease."

Related Links:

Saint Louis University



Channels

Genomics/Proteomics

view channel
Image: Pluristem technicians produce PLacental eXpanded (PLX) cells in the company\'s state-of-the-art facility (Photo courtesy of Pluristem Therapeutics).

Placental Cells Secrete Factors That Protect Nerves from Ischemic Damage

Cells derived from placenta have been found to protect PC12 cells—rat-derived cells that behave similarly to and are used as stand-ins to study human nerve cells—in a culture-based ischemic stroke model.... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.