Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Possible Target for Gene Therapy May Correct Cardiac Hypertrophy

By BiotechDaily International staff writers
Posted on 19 May 2014
Image: Left ventricular cardiac hypertrophy in short axis view (Photo courtesy of Patrick Lynch).
Image: Left ventricular cardiac hypertrophy in short axis view (Photo courtesy of Patrick Lynch).
A deficit in the expression of the protein Erbin (ErbB2 interacting protein) has been linked to the development of cardiac hypertrophy and heart failure.

The gene that encodes the Erbin protein is a member of the leucine-rich repeat and PDZ domain (LAP) family. The encoded Erbin protein contains 17 leucine-rich repeats and one PDZ domain. It binds to the unphosphorylated form of the ERBB2 protein and regulates ERBB2 function and localization. Erbin's C-terminal PDZ domain is able to bind to ErbB2, a protein tyrosine kinase which is often associated with poor prognosis during the development of skin cancer. Its N-terminal region has been shown to affect the Ras signaling pathway by disrupting Ras-Raf interaction.

Investigators at the Hebrew University of Jerusalem (Israel) looked at Erbin levels in humans and animals with and without cardiac hypertrophy. In addition, they genetically engineered a line of mice to lack the Erbin gene.

They reported in the April 22, 2014, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that there was down-regulation of Erbin expression in biopsies derived from human failing hearts.

In mouse models cardiac hypertrophy was induced either by isoproterenol administration or by aortic constriction. In both models the level of Erbin was significantly decreased. The genetically engineered Erbin knockout mice rapidly developed decompensated cardiac hypertrophy and following severe pressure overload, all of these mice died from heart failure (compared to only about 30% mortality observed in the control group).

It is known that Erbin inhibited Ras-mediated activation of the extracellular signal-regulated kinase (ERK) by binding to the protein Soc-2 suppressor of clear homolog (Shoc2). The data obtained during this study showed that ERK phosphorylation was enhanced in the heart tissues of the Erbin knockout mice. Furthermore, Erbin associated with Shoc2 in both whole hearts and in cardiomyocytes, and that in the absence of Erbin, Raf was phosphorylated and bound to Shoc2, resulting in ERK phosphorylation.

The investigators concluded that, "Erbin is an inhibitor of pathological cardiac hypertrophy, and this inhibition is mediated, at least in part, by modulating ERK signaling. We describe a cardioprotective role for Erbin, which suggests it is a potential target for cardiac gene therapy."

Related Links:

Hebrew University of Jerusalem



Channels

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.