Features Partner Sites Information LinkXpress
Sign In
Demo Company

Novel Technique Allows Genome Sequencing of Single Malaria Cells

By BiotechDaily International staff writers
Posted on 18 May 2014
Print article
Image: Graphic of the malaria parasite Plasmodium in a red
blood cell (Photo courtesy of Simon Levey).
Image: Graphic of the malaria parasite Plasmodium in a red
blood cell (Photo courtesy of Simon Levey).
A recently developed technique for analyzing the genome of a malaria parasite within a single red blood cell is expected to aid in the understanding of the molecular cell biology of these organisms and in the design of new drugs to prevent their growth and spread.

Investigators at the Texas Biomedical Research Institute (San Antonio, USA) combined advanced cell sorting technology and whole-genome amplification (WGA) to generate high-quality DNA samples from parasite-infected red blood cells (RBCs) for genotyping and next-generation sequencing. They optimized this approach through analysis of more than 260 single-cell assays, and quantified accuracy by decomposing mixtures of known parasite genotypes and obtaining highly accurate (> 99%) single-cell genotypes.

The investigators applied this validated approach directly to infections of two major malaria species, Plasmodium falciparum, for which long term culture is possible, and Plasmodium vivax, for which no long-term culture is feasible. They demonstrated that the single-cell genomics approach could be used to generate parasite genome sequences directly from patient blood in order to unravel the complexity of P. vivax and P. falciparum infections.

Malaria parasite infections are complex and often contain multiple different parasite genotypes and even different parasite species. "This has really limited our understanding of malaria parasite biology" said senior author Dr. Ian Cheeseman, a postdoctoral scientist in the genetics department of the Texas Biomedical Research Institute. “It is like trying to understand human genetics by making DNA from everyone in a village at once. The data is all jumbled up – what we really want is information from individuals. We are now able to look at malaria infections with incredible detail. This will help us understand how to best design drugs and vaccines to tackle this major global killer.”

The study describing the novel single-cell approach for genome sequencing was published in the May 8, 2014, online edition of the journal Genome Research.

Related Links:

Texas Biomedical Research Institute

Print article



view channel
Image: A partially completed three-dimensional printed airway from nostril to trachea with fine structure of the nasal cavity showing (Photo courtesy of Dr. Rui Ni, Pennsylvania State University).

The Structure of the Nasal Cavity Channels Food Smells into the Nose and Avoids the Lungs

Three-dimensional printing technology was used to create a model of the nasal cavity that enabled researchers to demonstrate why the smell of food goes into the nose rather than down into the lungs.... Read more


view channel
Image: Structure of the protein encoded by the CFTR gene (Photo courtesy of Wikimedia Commons).

Advanced Gene Therapy Cures Cystic Fibrosis in Culture and Mouse Models

Improvements in gene therapy technology enabled restoration of ion channel function in cultures of cells from cystic fibrosis (CF) patients and in a CF mouse model. In cystic fibrosis, mutations of... Read more

Lab Technologies

view channel
Image:  The BioSpa 8 Automated Incubator (Photo courtesy of BioTek Instruments).

Smart Incubator System Automates Live Cell Assay Operations

A new instrument that automates laboratory workflow by linking microplate washers and dispensers with readers and imaging systems is now available for biotech and other life sciences researchers.... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.